
GAP: Generic Aspects for PHP

Sebastian Bergmann
eZ systems AS
Kverndalsgate 8

Postboks 253
N-3701 Skien (Norway)

sb@ez.no

Günter Kniesel
Department of Computer Science III

University of Bonn
Römerstrasse 164

D-53117 Bonn (Germany)

gk@cs.uni-bonn.de

ABSTRACT
In this paper, we explore how aspect-oriented programming can be
implemented for the PHP programming language. We start with an
overview of existing implementations, identifying their strengths
and weaknesses. We then introduce GAP, our implementation of
aspect-oriented programming for PHP that uses dynamic weaving,
supports aspect genericity, and provides a framework to implement
custom pointcut languages on top of it. The sum of these features
has previously been supported only in experimental research pro-
totypes that have had little impact on commercial software devel-
opment. In contrast, PHP has a large user community. In the last
decade, it has developed from a niche language for adding dynamic
functionality to small websites to a powerful tool making strong
inroads into large-scale, business-critical Web systems. We ex-
pect that GAP will significantly ease development of such systems
while promoting a seamless integration of many advanced concepts
of aspect-oriented systems: aspect genericity, dynamic weaving, a
state-sensitive pointcut language, and extensibility.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Abstract Data Types

General Terms
Design, Languages

Keywords
Generic Aspects, Dynamic Weaving, PHP, Extensible Pointcut Lan-
guage

1. INTRODUCTION
PHP [17] is a widely-used scripting language. Initially designed for
Web programming, it has developed to a general-purpose object-
oriented language making strong inroads into large-scale, business-
critical Web systems. For instance, financial institutions develop
and maintain the BASEL II [18] credit and insurance rating tools
using PHP and Yahoo runs all its business on PHP (except the core
of the search engine). As of version 5, released July 2004, the PHP
language features an object model that is similar to the ones of Java
and C# and integrates ideas from other programming languages.
The key technical contributor to PHP’s success is its simplicity,
which translates into shorter development cycles, easier mainte-
nance, and lower training costs. The second one is social – the
very large and vibrant community around it, which develops not

EWAS 2006 – Third European Workshop on Aspects in Software. August
31, 2006, Enschede, The Netherlands

only PHP itself but also thousands of open source applications that
can be used off-the-shelf or as references for new applications.

Given the wide-spread use and impact of PHP on current web-
centered software development, the benefits of a well-designed in-
tegration of aspect-oriented programming in PHP would be huge.
However, existing attempts to support aspect-oriented programming
in PHP do not take advantage of the dynamic nature of the lan-
guage, ignore new aspect-oriented language concepts, such as gener-
icity, or are not compatible with new versions of the language (see
Section 2).

In this paper we present an approach that provides dynamicity and
compatibility to the official PHP language releases while support-
ing a powerful aspect language model, including aspect genericity.
It is called GAP, Generic Aspects for PHP. A predecessor was pre-
sented in [1] under the name AspectPHP. We have chosen to re-
name our approach to GAP in order to avoid confusion with the
aspectPHP project [19] and to emphasize the support for aspect
genericity.

2. THE STATE OF AOP FOR PHP
In this section, we give an overview of the different options for
implementing an aspect-oriented extension of PHP and review ex-
isting implementations.

2.1 Preprocessor
A preprocessor can be used to perform source code transformations
and statically weave the aspect code into the base program. The
result of this weaving is PHP source code that can then be deployed
in a standard PHP environment.

Existing Implementations. PHPAspect [20] extends the PHP lan-
guage with keywords inspired by AspectJ [2]. Figure 1 shows an
implementation of the Singleton design pattern [3] in PHPAspect.
Aspect-Oriented PHP [21] is largely similar to PHPAspect, the
main difference being that the AOPHP compiler is implemented
in Java.

PHPAspect provides a compiler, written in PHP, that performs static
weaving using source code transformations (see Figure 2). PH-
PAspect is currently being reimplemented in C, using an XML rep-
resentation for the abstract syntax trees and using XSLT for the
weaving process (see figure 3). With the use of XSLT and XPath
the author of PHPAspect hopes to achieve independence for the lex-
ical and syntax analysis from the PHP version and more flexibility
with regard to the aspect language.

<?php aspect Singleton {
public $instances = array();

pointcut singleton:new(*(*));

around singleton {
$i = $thisJoinPoint->getClassName();

if (!isset($singleton->instances[$i])) {
$singleton->instances[$i] = proceed();

}

return $singleton->instances[$i];
}

}
?>

Figure 1: Singleton implementation in PHPAspect. PHP identi-
fiers prefixed with a $ sign represent variables. The right arrow
-> represents field access or method invocation.

Figure 2: The weaving chain of PHPAspect (from ph-
paspect.org)

Figure 3: The new weaving chain of PHPAspect (from ph-
paspect.org)

Evaluation. Since PHP is an interpreted, dynamic language, static
weaving comes with both advantages and disadvantages. On the
one hand, weaving is performed once before deployment and has
no performance impact at run-time. On the other hand, static weav-
ing imposes limits to both join point model and pointcut language
with regard to leveraging the dynamic nature of the underlying pro-
gramming language.

2.2 Aspect-Aware PHP Interpreter
Extensibility is one of the reasons why PHP became the favourite
"glue" of the Web. Functionality from existing third-party libraries
(database clients or image manipulation toolkits, for instance) can
be made available through PHP with the ease of use one expects
from a scripting language.

The Zend Engine, the compiling and executing core of the PHP
Interpreter, can be extended using the C programming language.
An extension can be implemented either as a plug-in that can be

dynamically loaded or by changing the interpreter’s source code.

Evaluation. Source changes enable changing or extending the lan-
guage syntax by modifying the scanner and parser rules. The re-
sulting language extension can only be distributed in the form of a
custom binary or a patch against the original source code of a spe-
cific version of PHP. In contrast, a plug-in is developed using the
public APIs of the PHP interpreter and can therefore be deployed
with different versions of the language. For portability, a plugin-
based extension is preferable.

Existing Implementations. The aspectPHP prototype [19] is a
reimplementation of Aspect-Oriented PHP [21] in C. It is available
only as a patch for PHP 4.3.10, tying it closely to this (meanwhile
outdated) implementation of the language.

2.3 Meta-Programming
A language extension can be implemented in the PHP program-
ming language itself, using its meta-programming capabilities. These
include

• a Reflection API [22] for introspecting at runtime classes,
methods, etc.

• interceptor methods inspired by the doesNotUnderstand
selector of Smalltalk [4]. In PHP, read and write access to un-
declared attributes and calls to undeclared methods of an ob-
ject are handled by the methods __get(), __set(), and
__call().

• byte code modification via the Runkit extension [23].

Existing Implementations. The AOP Library for PHP [24] is a
PHP library that supports just a very rudimentary join point model
and requires extensive manual changes to the base code, failing
to support the two main characteristics of aspect-oriented systems:
obliviousness and quantification [5].

Figure 4 shows how to declare “aspects” and advice using the AOP
Library for PHP such that invocation of aMethod() in AClass()
invokes first the before advice code, then the base code of the
method, and finally the after advice code. The example illus-
trates that the base code has to be modified extensively for using the
aspect. First, the constructor of the base class needs to be changed
to accept an $aspect object and store it in an instance variable1.
Then, explicit calls to this object’s _before() and _after()
methods have to be inserted to each method of the class. This is not
different from any other invocation of library code. Therefore the
claim of supporting AOP is hardly justified.

Evaluation. Whereas the only existing attempt to bring aspects to
PHP using its metalevel features can hardly be recommended, the
metaprogramming approach cannot be dismissed in general. On the
contrary, it has the potential to take advantage of PHP’s dynamicity
and to provide a portable solution, that is compatible with different
language versions.

2.4 State of Art Summary
Our short review has shown that from the four attempts to bring
aspect-oriented concepts to PHP only three really provide aspect-
1__construct() is the name of the constructor method in PHP.

<?php
require_once ’AClass.php’;
require_once ’aop.lib.php’;

$aspect = new Aspect;
$pointCut = $aspect->pointcut(’call AClass::aMethod’);
$pointCut->_before(’... before advice code ...’);
$pointCut->_after(’... after advice code ...’);
$pointCut->destroy();

$object = new AClass($aspect);
?>

<?php class AClass {
private $aspect;

public function __construct($aspect) {
$this->aspect = $aspect;

}

public function aMethod() {
Advice::_before($this->aspect);
// ... base code ...
Advice::_after($this->aspect);

}
} }?>

Figure 4: Aspect declaration with the AOP Library for PHP
and base class using the aspect. The “aspect” is just a library
that is invoked explicitly from the base code.

oriented functionality. Of these, one is hard-coupled to an out-
dated language version. The other two are based on static weav-
ing, falling short of leveraging on the dynamic language features
of PHP in aspects. In addition, they are based on the language
model of AspectJ, which does not support some powerful new con-
cepts that are particularly well-suited for the development of large
web-based applications: genericity, and a state-aware, extensible
pointcut language.

3. GAP: GENERIC ASPECTS FOR PHP
In this section we introduce GAP, our implementation of aspect-
oriented programming for PHP. GAP supports an extensible point-
cut language, aspect genericity, and dynamic weaving. Taking ad-
vantage of PHP’s meta-programming capabilities, this is achieved
without changing the language syntax or interpreter.

3.1 Aspect Basics
In GAP aspects are plain PHP classes that use annotations in com-
ments to declare pointcuts, advice, and inter-type declarations. Ad-
vice declarations bind a pointcut expression to an invocation of a
plain PHP method that takes a join point object as parameter. The
method implements the advice body. It will be executed on all join
points matching the pointcut expression.

In GAP, custom pointcuts can be implemented easily based on an
open pointcut language framework (see section 4.1). In its stan-
dard configuration GAP allows quantifications over three join point
types:

• Object initialization

• Field access

• Method call or execution

<?php
/* @pointcut allInvocations : method(* *->*(..));
* @after allInvocations : Logging->log();
*/
class Logging {
public function log($joinPoint) {
printf(
"%s->%s() called %s->%s()\n",
$joinPoint->getSource()

->getDeclaringClass()
->getName(),

$joinPoint->getSource()
->getName(),

$joinPoint->getTarget()
->getDeclaringClass()
->getName(),

$joinPoint->getTarget()
->getName()

);
}

} ?>

Figure 5: GAP aspect that logs all method calls

The currently implemented pointcut syntax is similar to the one of
AspectJ (see Figure 1). For instance, the first line of the comment
in Figure 5 declares a pointcut that matches all method invocations.
The @pointcut allInvocations annotation starts the dec-
laration of a pointcut named allInvocations. The method
keyword is the selector for the combined Method Call / Method
Execution join point in GAP’s join point model. The pattern *
->(..) matches methods with arbitrary visibility (first star),
class name (second star), method name (third star), and parameter
list (double dots).

Note that the allInvocations pointcut from Figure 5 also matches
the execution of the log() advice method. However, invoking an
advice method for the execution of an advice method is currently
disabled in GAP in order to avoid certain sources of aspect interfer-
ence. Whether this is too restrictive could be a topic of discussion
at the workshop.

Join points are represented by GAP_JoinPoint instances. For
each kind of join point supported by GAP’s join point model there
is a specific implementation of GAP_JoinPoint. For instance,
the class GAP_JoinPoint_MethodCall implements GAP’s com-
bined method call and method execution join point. Its instances
include information on the calling object, the calling method, the
called object, and the called method. This information is repre-
sented by objects from the Reflection API, in this case two in-
stances of the ReflectionMethod class, representing the caller
and callee, respectively.

Predefined GAP Pointcuts
initialization(class(parameters))

get(modifier class->attribute)

set(modifier class->attribute)

method(modifier class->method(parameters))

source(modifier class->method(parameters))

cflow(modifier class->method(parameters))

Table 1: Implemented pointcuts demonstrating the versatility
of GAP’s extensible pointcut framework. Italics indicate non-
terminals

Through the information provided by the $joinPoint an advice
method that is invoked for a method execution join point can find
out which method called the method associated with the current
join point. This information is also used by the additional pointcut
expressions supported by GAP’s prepackaged pointcut language
implementation: source and cflow (see Table 1). The source()
pointcut expression matches the immediate method that performed
an object instantiation, attribute access, or method call. The cflow()
pointcut expressions matches if the specified method is on the cur-
rent call stack.

Pointcuts can be associated with the following aspect effects [6]:

• Advice: Execution of code before, after or around any of the
above-mentioned join points (indicated by the annotations
@before, @after, or @around).

• Declarations: Addition and change of fields, methods, in-
heritance relations and interface implementation declarations
(indicated by the keyword @introduce).

• Custom Errors: With the declare error or declare
warning syntax one can customize the response to the oc-
currence of a join point, as shown in Figure 6.

The second line of the comment in Figure 5 shows a GAP advice.
The @after annotation binds the method log of class Logging
to the previously defined pointcut allInvocations. The over-
all effect of Figure 5 is the declaration of an aspect named Logging
that invokes the advice named log() after every method call. The
join point context is passed to the advice method as an object of the
type GAP_JoinPoint.

3.2 Aspect Genericity
The implementations of aspect-oriented programming for PHP that
we discussed in Section 2 introduce strong dependencies of aspects
on base code by requiring aspects to use concrete names of types,
classes, methods, and other entities from base programs.

Wildcards, such as * and .. are intended to alleviate this problem
but are no real solution since they throw the child out with the bath.
Instead of being too specific, they are too general. They match more
than intended because it is not possible to express dependencies of
the values matched by different wildcards.

As a solution to this problem, generic aspect languages [6] such as
LogicAJ [7], Sally [8], Carma [9], and OReA [10] replace wild-
cards (e.g. *) by named logic meta-variables (e.g. ?var). All
occurrences of ?var in a pointcut expression must match the same
value. Further constraints on the legal matches can be expressed
by additional predicates that can be used in pointcut definitions.
The source predicate used in Figure 7 is an example. It does not
select join points but only constrains the matches of the method
predicate.

Figure 7 shows how GAP supports meta-variables in its annotation-
based pointcut language. The localCalls pointcut captures all
method invocations that address methods from the same class. The
values of meta-variables that matched during the evaluation of the
pointcut expression can be accessed via the $joinPoint object’s
getMetaVariable method.

<?php
/**
* @pointcut inFactory : method(Factory->get(..));
* @pointcut newObject : initialization(Base+(..));
* @declare error : !inFactory && newObject
* : "Factory::get() must be used.";
*/
class Factory {

public static function get($type)
{

return new $type;
}

}
?>

Figure 6: GAP aspect that enforces the use of a Factory method

<?php
/* @pointcut localCalls : method(* ?class->*(..))
* && source(* ?class->*(..));
* @after localCalls : Logging->log();
*/
class Logging {
public function log($joinPoint) {
printf(
"%s::%s() called %s::%s()\n",
$joinPoint->getMetaVariable(’class’),
$joinPoint->getSource()->getName(),
$joinPoint->getMetaVariable(’class’),
$joinPoint->getTarget()->getName()

);
}

}
?>

Figure 7: GAP aspect using a pointcut with meta-variables to
express logging of local calls

4. IMPLEMENTATION OF GAP
In this section we show how we implemented GAP in PHP using
only its Reflection API, interceptor methods and the Runkit exten-
sion.

4.1 Open Architecture
The two main components of the GAP plugin are the GAP_Weaver
class and the GAP_Dispatcher class. They are the core of GAP
on top of which the join point model and pointcut language frame-
work are built. The latter provides the building blocks for imple-
menting a pointcut language. Figure 8 shows a subset of these
building blocks. Together with the pointcut registry they provide
a way to capture join points and activate advice code. However,
this low-level declaration of join points and advice is not conve-
nient and practical for everyday use. Therefore, these internals of
the API are hidden behind the annotation-based pointcut and ad-
vice declaration syntax introduced in the previous section. Using
the basic classes, other implementors can extend the pointcut lan-
guage with new built-in pointcut definitions.

4.2 Load-Time Hooks for Dynamic Weaving
The PHP Interpreter uses its Streams Layer [25] to load PHP source
files. This layer provides a unified approach to the handling of files
and sockets. Any stream, once opened, can also have any number of
filters applied to it, which process data as it is read from or written
to the stream.

Figure 8: Subset of the GAP Pointcut Framework

Figure 9 illustrates the GAP weaving chain: Using a streams fil-
ter written in PHP, the GAP Weaver hooks into the loading of the
source code of classes (green) and aspects (blue). The first weaving
stage performs source code transformations and passes the modi-
fied source code to the compiler integrated in the PHP Interpreter.
The second weaving stage operates on the bytecode generated by
the compiler and uses the Runkit extension to complete the inser-
tion of generic hooks into the classes. The pointcut expressions of
the aspects are evaluated and stored in the Pointcut Registry that is
used by the GAP Dispatcher to capture join point events at run-time
and dispatch the appropriate advices. The actual advice execution
can be dynamically turned off at runtime.

GAP’s annotation-based declaration of pointcuts and advice is im-
plemented as follows:

• When loading the source code for an aspect, the class rep-
resenting the aspect is searched for annotations, using the
Reflection API of PHP. The annotations are parsed and con-
verted into an object representation. For instance, the @pointcut
annotation, is parsed into a tree of GAP_Pointcut objects
that is then passed to the Pointcut Registry. Similarly, the
associations of pointcuts and advice is parsed and registered.

• When loading the source code for a class, the appropriate
inter-type declarations are inserted into the bytecode of the
class and the generic hooks for advice execution are inserted
into the bytecode of its methods. Byte code manipulation is
performed using the Runkit extension of the PHP Interpreter.

In the remainder of this section we explain how the generic hooks
for the three different join point types are implemented in detail.

Method Call Hook Each method of the processed class is replaced
by a proxy method that calls the methodCall() method of the
GAP_Dispatcher class. This method has access to the original
implementation of the proxy method and can execute it between the
execution of before- and after-advices. Figure 10 shows the PHP
implementation of this scheme.

Attribute Access Hook Each attribute of the class is renamed so
that accessing it using the original name triggers a call to the __get()
(for read access) or __set() (for write access) method. Imple-
mentations of these interceptor methods are woven into the class,
too. They call the attributeRead() and attributeWrite()
methods of the GAP_Dispatcher class.

New Object Hook. The weaving of the hook for capturing the
New Object join point is an exception from the abobe scheme, as it

is actually performed on the source code level. It replaces calls to
the new operator with corresponding calls to the newObject()
method of the GAP_Dispatcher class.

4.3 Run-Time Dispatcher
During program execution, the previously introduced hooks for the
join points check whether or not an the pointcut registry contains
a pointcut that matches the current join point. If that is the case,
the GAP_Dispatcher class handles the execution of the corre-
sponding advice and passes the current context in the form of an
GAP_JoinPoint object to the advice method.

4.4 Evaluation
The flexibility of dynamic weaving comes at the price of a possi-
ble performance hit. For every execution, for instance, a request
to a PHP-driven website, the aspect code has to be woven into
the base program. During the execution of the program there are
two additional method calls for every attribute access, method call
(see figure 11), and execution of the new operator. Run-time mea-
surements and performance comparisons with other implementa-
tion schemes are still to be carried out.

5. RELATED WORK
This paper presented GAP, an extension of the PHP programming
language with aspect-oriented programming concepts. Compared
to other implementations of aspect-oriented programming for PHP
(see Section 2) GAP stands out as being the first implementation
that supports dynamic weaving, genericity, and an extensible point-
cut language.

Compared to non-PHP aspect languages and systems, GAP pro-
vides a specific mix of partly well-known concepts and techniques.
GAP’s design balances the expressive power of generic aspect lan-
guages such as LogicAJ [7], Sally [8], Carma [9] and OREA [10]
with the simplicity of the design of Classpects [11]. With the for-
mers it shares the concept of logic meta-variables. With the latter
it shares the reliance on plain base level methods as the body of
advice.

The open architecture of GAP allows the implementation of cus-
tomized pointcut languages on top of a common kernel that handles
the weaving and dispatching of aspect code. In this respect, GAP
has similarities with various other systems built on reflection and to
open and extensible systems such as Josh [12] and LogicAJ 2 [13].

Implementation-wise, GAP’s dispatch mechanism is related to the
method wrappers of Brant, Foote, Johnson and Roberts, which are
a standard mechanism in Smalltalk implementations and the ba-
sis of aspect-oriented extensions of Smalltalk, such as AspectS
[14]. Load-time weaving of byte code is based on the filter con-
cept of PHP that provides the generic class file interception func-
tionality that has only recently been integrated into Java 5 (see
java.lang.instrument) and has previously required specific
solutions such as JMangler [15]. Use of load time weaving as a way
to implement generic hooks that enable run-time weaving has been
pioneered in JAC [16]. The pointcut registry and dispatcher mech-
anism are recurring themes in various dynamic weaving systems
and theoretical models of aspect orientation.

6. CONCLUSIONS AND FUTURE WORK
This paper presented GAP, an extension of the PHP programming
language with aspect-oriented programming concepts. Compared

PHP

S
t
r
e
a
m
s

GAP

W
e
a
v
e
r

PHP

C
o
m
p
i
l
e
r

GAP

W
e
a
v
e
r

Aspects

1. 2. 3. 4.

GAP

Pointcut
Registry

5.

Classes with generic hooks

Figure 9: The weaving chain of GAP

protected static function weaveMethodJoinPoint(
ReflectionMethod $method

) {
runkit_method_rename(

$method->getDeclaringClass()->getName(),
$method->getName(),
’__GAP_’ . $method->getName()

);

runkit_method_add(
$method->getDeclaringClass()->getName(),
$method->getName(),
self::generateMethodParameters($method),
’return GAP_Dispatcher::getInstance()->
methodCall(’.
’ new GAP_JoinPoint_Method’.
’);’

);
}

Figure 10: The GAP_Weaver::weaveMethodJoinPoint()
method

to other implementations of aspect-oriented programming for PHP
GAP stands out as being the first implementation that supports dy-
namic weaving, genericity, and an extensible pointcut language.

Compared to other aspect languages and systems, GAP provides
a specific mix of partly well-known concepts and techniques. Its
specific power is the orthogonal integration of all these features
into a widely-used programming language. We hope that the use
of GAP as a powerful, dynamic extension to PHP will foster the
adoption of aspect-oriented technologies in a community that is not
using the research prototypes that have first demonstrated some of
the more advanced techniques (e.g. generic aspects).

As a long-time contributor to PHP the first author had early access
to new Runkit features that are still to be made available publicly.
Therefore, we will wait with the first public release of GAP until
they are available. We will use this time to further improve GAP’s
pointcut language and performance.

The dynamic interpretation of the pointcut expressions at runtime
allows for state-sensitive pointcut languages. Possible applications
of state awareness includes the selective execution of advice de-
pending on information about the user that requests a website doc-

Method Call
(handled by proxy)

GAP_Dispatcher::methodCall()

Before Advice Original Method After Advice

Figure 11: Dispatching Method Call Advices

ument, his domain name or web browser, for instance. We are still
thinking about an elegant syntax to integrate support for state sen-
sitivity to our annotation-based pointcut language.

Further benchmarking will have to show whether or not the deploy-
ment of GAP in the web-server environment that is usually associ-
ated with PHP is practical in spite of the performance hit incurred
by the flexibility of dynamic weaving. The GAP_Dispatcher
class could be implemented in C as an extension to the PHP Inter-
preter to improve the run-time performance.

Our incentive to develop GAP, however, was not primarily in us-
ing it in a web-server environment but rather in the development of
tools such as PHPUnit [27]. GAP could be used, for instance, to
implement Mock Objects through an aspect that implements class
posing (following [6][Figure 6]) or to enforce design constraints at
development time as illustrated in Figure 6. Another usage scenario
for GAP lies within the PHP-GTK [28] environment, which pro-
vides an object-oriented interface to GTK+ [29] classes and func-
tions and facilitates the writing of client-side cross-platform GUI
applications using PHP.

7. ACKNOWLEDGEMENTS
Sebastian Bergmann, who is a long-time contributor to the PHP
project, would like to thank his peers from the PHP community in
general and Sara Golemon, the author of the Runkit extension, in

particular. He is also thankful for the support and encouragement
from Prof. Dr. Armin B. Cremers, head of the Computer Science
Department III at the University of Bonn.

8. REFERENCES
[1] Sebastian Bergmann. AspectPHP: An Aspect-Oriented

Programming Extension for the PHP Programming Language,
Poster, In: Student Research Extravaganza. Poster Session of
the Fifth International Conference on Aspect-Oriented
Software Development (AOSD.06), 2006, Bonn.

[2] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, William G. Griswold. An Overview of AspectJ,
In: Lecture Notes in Computer Science, volume 2072, pages
327-355, 2001.

[3] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[4] Mario Wolczko. Semantics of Smalltalk-80, In: Proceedings of
the 1987 European Conference on Object-Oriented
Programming, J. Bézivin, J.-M. Hullot, P. Cointe, and H.
Lieberman, editors, Lecture Notes in Computer Science,
volume 276, pages 108-120. Springer-Verlag, Paris, June 1987.

[5] Robert E. Filman and Daniel P. Friedman. Aspect-Oriented
Programming is Quantification and Obliviousness, In:
Workshop on Advanced Separation of Concerns, OOPSLA
2000, October 2000, Minneapolis.

[6] Günter Kniesel, Tobias Rho. A Definition, Overview and
Taxonomy of Generic Aspect Languages, L’Objet, vol. 11, 3,
pp. , to appear, Hermes Science, London.

[7] Tobias Windeln. LogicAJ – Eine Erweiterung von AspectJ um
logische Meta-Programmierung (in German), Diploma Thesis,
CS Dept. III, University of Bonn, Germany, August 2003.

[8] Stefan Hanenberg, Rainer Unland. Parametric Introductions,
In: Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development (AOSD.03), 2003,
Boston, MA.

[9] Kris Gybels, Johan Brichau. Arranging Language Features for
More Robust Pattern-Based Crosscuts, In: Proceedings of the
2nd International Conference on Aspect-Oriented Software
Development (AOSD.03), 2003, Boston, MA.

[10] Maja D’Hondt. Hybrid Aspects for Integrating Rule-Based
Knowledge and Object-Oriented Functionality, Ph.D. Thesis,
Vrije Universiteit Brussel, May 2004.

[11] Hridesh Rajan, Kevin J. Sullivan.Classpects: Unifying
Aspect- and Object-Oriented Language Design, In:
Proceedings of the 27th International Conference on Software
Engineering, 2005, St. Louis, MO.

[12] Shigeru Chiba, Kiyoshi Nakagawa. Josh: An Open
AspectJ-like Language, In: Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development
(AOSD.04), 2004, Lancaster, UK.

[13] Tobias Rho, Günter Kniesel, Malte Appeltauer. Fine-Grained
Generic Aspects, In: Workshop on Foundations of
Aspect-Oriented Languages (FOAL’06), in conjunction with
the Fifth International Conference on Aspect-Oriented
Software Development (AOSD.06), 2006, Bonn.

[14] Robert Hirschfeld. AspectS: AOP with Squeak, In:
OOPSLA’01 Workshop on Advanced Separation of Concerns,
2001, Tampa, FL.

[15] Günter Kniesel, Pascal Costanza, Michael Austermann.
JMangler - A Powerful Back-End for Aspect-Oriented
Programming, In: Aspect-Oriented Software Development,
Prentice Hall, 2004.

[16] R. Pawlak, L. Duchien, L. Seinturier, G. Florin, F. Legond,
L. Martelli. JAC: A Framework for Separation of Concerns and
Distribution, In: Aspect-Oriented Software Development,
Prentice Hall, 2004.

[17] http://www.php.net/

[18] http://en.wikipedia.org/wiki/Basel_ii

[19] http://www.cs.toronto.edu/∼yijun/aspectPHP/

[20] http://www.phpaspect.org/

[21] http://www.aophp.net/

[22] http://www.php.net/manual/en/language.oop5.reflection.php

[23] http://www.php.net/runkit

[24] http://www.phpclasses.org/aopinphp

[25] http://www.php.net/manual/en/streams.php

[26] http://www.php.net/debug_backtrace

[27] http://www.phpunit.de/

[28] http://gtk.php.net/

[29] http://www.gtk.org/

