
Rheinische Friedrich-Wilhelms-Universität

Institut für Informatik III
Prof. Dr. Armin B. Cremers

Design and Implementation of a Workflow Engine

Diplomarbeit von

Sebastian Bergmann
Aulgasse 14

53721 Siegburg

E-Mail: sb@sebastian-bergmann.de

Matrikelnummer: 1247261

1. Gutachter: Prof. Dr. Armin B. Cremers
2. Gutachter: Prof. Dr. Rainer Manthey

Tag der Abgabe: 13. Februar 2007
Letzte Aktualisierung: 19. August 2009

Manifesto

Except where indicated otherwise, this thesis is my own original work.

Sebastian Bergmann

This thesis is published under the Creative Commons Attribution 2.0 Germany license.

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

• to make commercial use of the work

Under the following conditions:

• Attribution. You must attribute the work in the manner specified by the author or
licensor.

• For any reuse or distribution, you must make clear to others the license terms of this
work.

• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Abstract

This thesis discusses the design and implementation of a software component that faciliates
the specification, management, and execution of so-called workflows.
The discussion of this component’s design includes the semantics and syntax of the underlying
workflow model as well as the actual software design. The former builds upon the Workflow

Patterns [BK03] terminology, the latter on the concepts of a Workflow Virtual Machine [SF04]
and the idea that a workflow system should be comprised of loosely coupled components
[DAM01, DG95, PM99].

Diese Diplomarbeit behandelt den Entwurf und die Implementierung einer Softwarekompo-
nente für die Definition, Verwaltung und Ausführung von Spezifikationen so genannter Work-
flows.
Die Diskussion des Entwurfs dieser Komponente behandelt Semantik und Syntax des zu-
grunde liegenden Workflow-Modells ebenso wie das eigentliche Software-Design. Ersteres
baut auf der Terminologie der Workflow Patterns [BK03] auf, letzteres auf dem Konzept einer
Workflow Virtual Machine [SF04] und der Idee, dass ein Workflow-System aus lose gekoppel-
ten Komponenten aufgebaut sein sollte [DAM01, DG95, PM99].

Diese Diplomarbeit wurde in englischer Sprache verfasst.

Contents

Manifesto . i
License . i
Abstract . ii
List of Figures . v

Introduction 1

1. Problem Domain 3
1.1. Enterprise Content Management . 3
1.2. Workflow Management . 4
1.3. Summary . 7

2. Workflow Semantics 8
2.1. Petri Nets . 8
2.2. Workflow Patterns . 9

2.2.1. Basic Control Flow Patterns . 10
2.2.2. Advanced Branching and Synchronization 12
2.2.3. Structural Patterns . 14
2.2.4. Cancellation Patterns . 14

2.3. Summary . 14

3. Technology 15
3.1. PHP . 15
3.2. eZ Publish . 16
3.3. eZ Components . 18

4. Requirements 20
4.1. eZ Publish 3 . 20
4.2. eZ Publish Telemark . 21

iii

Sebastian Bergmann Design and Implementation of a Workflow Engine

4.2.1. Use Cases . 23
4.3. Summary . 26

5. Workflow Model 27
5.1. Semantics . 27

5.1.1. Activities and Transitions . 27
5.1.2. State and Workflow Variables . 28
5.1.3. Control Flow . 28
5.1.4. Action Nodes and Service Objects 29
5.1.5. Sub-Workflows . 29

5.2. Syntax . 29
5.2.1. Graph Structure . 29
5.2.2. Conditions . 31

5.3. Summary . 31

6. Design and Implementation 32
6.1. Architecture . 32
6.2. Workflow Virtual Machine . 34
6.3. Graph-Oriented Programming . 35
6.4. Implementation Details . 36
6.5. Example . 38
6.6. Summary . 41

7. Evaluation and Related Work 42
7.1. Evaluation . 42

7.1.1. Workflow Model . 42
7.1.2. Implementation . 44

7.2. Related Work . 44
7.2.1. Research . 44
7.2.2. Workflow Systems for PHP . 45

7.3. Summary . 47

8. Conclusion and Future Work 48
8.1. Conclusion . 48
8.2. Future Work . 49

8.2.1. Analysis and Verification of Workflows 49

Contents iv

Sebastian Bergmann Design and Implementation of a Workflow Engine

8.2.2. Workflow Model . 49
8.2.3. Aspect-Oriented Programming . 49
8.2.4. Compilation of Workflows . 50

A. Tutorial 51
A.1. Workflow Definition API . 51

A.1.1. Defining a New Workflow . 51
A.1.2. Loading an Existing Workflow . 56

A.2. Workflow Execution API . 57
A.2.1. Workflow with Wait States . 57
A.2.2. Workflow without Wait States . 59
A.2.3. Simulating Workflow Execution . 59

B. API Reference 60
B.1. Graph Node Classes . 60

B.1.1. ezcWorkflowNode . 60
B.1.2. Start and End Nodes . 60
B.1.3. ezcWorkflowNodeAction . 63
B.1.4. ezcWorkflowNodeSubWorkflow . 64
B.1.5. Workflow Variables . 65
B.1.6. Workflow Patterns . 68

B.2. Condition Classes . 71
B.2.1. Variable Access . 71
B.2.2. Boolean Expressions . 72
B.2.3. Comparisons . 72
B.2.4. Types . 75

C. Bibliography 80

Contents v

List of Figures

1.1. Who must do what when and how? . 6

2.1. The Causality workflow primitive . 9
2.2. The Iteration workflow primitive . 9
2.3. The AND-Split workflow primitive . 9
2.4. The AND-Join workflow primitive . 9
2.5. The OR-Split workflow primitive . 9
2.6. The OR-Join workflow primitive . 9
2.7. The Sequence workflow pattern . 10
2.8. The Parallel Split workflow pattern . 11
2.9. The Synchronization workflow pattern . 11
2.10. The Exclusive Choice workflow pattern . 12
2.11. The Simple Merge workflow pattern . 12
2.12. The Multi-Choice workflow pattern . 13
2.13. The Synchronizing Merge workflow pattern 13

3.1. The Architecture of eZ Publish 3 . 16
3.2. The Content Object abstraction of eZ Publish 17
3.3. The eZ Components library for PHP 5. 18

4.1. The workflow system in eZ Publish 3 . 20
4.2. Workflow for publishing a content object in eZ Publish 3 21
4.3. The Multiple Approval workflow . 24
4.4. The Employment Process workflow . 25

5.1. The Axiom grammar rule . 30
5.2. The Reduction grammar rule . 30
5.3. The AND grammar rule . 30
5.4. The XOR grammar rule . 30

vi

Sebastian Bergmann Design and Implementation of a Workflow Engine

5.5. The OR grammar rule . 31
5.6. The Discriminator grammar rule . 31

6.1. Conceptual architecture for the workflow engine 33

A.1. Workflow graph rendered using GraphViz 58

B.1. The ezcWorkflowNode class and its subclasses 61
B.2. The ezcWorkflowNodeArithmeticBase class and its subclasses 66
B.3. The ezcWorkflowNodeBranch class and its subclasses 77
B.4. The ezcWorkflowNodeMerge class and its subclasses 78
B.5. The ezcWorkflowNodeSynchronization class and its subclasses 79
B.6. The ezcWorkflowNodeConditionalBranch class and its subclasses 79

List of Figures vii

Introduction

Problem Statement and Goal

This thesis has the design and implementation of a workflow engine as its goal. This goal
has motivations from both academia and industry that were represented by the two supervis-
ing institutions, the Institute of Computer Science of the University of Bonn, Germany and
eZ Systems AS, respectively.

The topic of this diploma thesis was set up by eZ Systems AS in Skien, Norway. The company
is the creator of eZ Publish, an Open Source Enterprise Content Management System, and
eZ Components, a components library for PHP 5. As we will see in Chapter 4, eZ Systems AS
is in need of a flexible and reusable workflow engine component, written in the PHP program-
ming language, that can be used in the development of the next version of their eZ Pub-
lish ECMS. Of academic interest is how research such as [BK03, DAM01, PM99, SF04] can
be put to use for the design and implementation of such a software component.

The goal of this thesis is therefore to review the relevant literature, to find a suitable work-

flow model as the foundation for the design and implementation of a workflow engine, and to
evaluate the resulting software component with regard to the industry requirements set up by
eZ Systems AS.

Structure

Chapter 1 gives an introduction to the problem domain of Enterprise Content Management and
Workflow Management. Chapter 2 presents Petri nets as a formal way and workflow patterns
as a more pragmatic way to define the semantics of a workflow model.

1

Chapter 3 gives an introduction to the technology stack (PHP, eZ Publish, eZ Components)
that is relevant to and used by the software that has been implemented as part of this thesis.
Chapter 4 discusses the requirements that lead to the development of this software.

Chapter 5 presents the semantics and syntax of the workflow model that is the foundation for
the software. Chapter 6 discusses the design and implementation of the software.

This paper concludes with an evaluation of the software (Chapter 7), a comparison to related
work, and an outlook on future work (Chapter 8).

Acknowledgements

I would like to thank Prof. Dr. Armin B. Cremers for making it possible that I could do my
thesis in cooperation with eZ Systems AS and Dr. Stefan Lüttringhaus-Kappel for being my
thesis advisor. I would like to thank everyone at eZ Systems AS for the great time I had in
Norway.

Finally, I would like to express my appreciation for the people involved in the development of
the free software that is discussed in this paper (PHP, eZ Publish, eZ Components) and was
used to typeset (LATEX, Dia, Doxygen, GraphViz, KOMA-Script, PGF, TikZ) this paper.

Chapter 1.

Problem Domain

This chapter gives an introduction to the problem domain of Enterprise Content Management
and Workflow Management.

1.1. Enterprise Content Management

The meaning of the term ”Enterprise Content Management” can be approached gradually by
looking at the three words that make it up:

• Enterprise refers to the employees of an enterprise with access and editing rights.

• Content refers to arbitrary content stored in the electronic systems of an enterprise.

• Management refers to a software system for the administration, control, and processing
of content in an enterprise, both internally (in an intranet, for example) and externally
(on the internet, for example).

The Association for Information and Image Management (AIIM) defines Enterprise Content
Management (ECM) as

the technologies used to capture, manage, store, preserve, and deliver content

and documents related to organizational processes. ECM tools and strategies

allow the management of an organization’s unstructured information, wherever

that information exists [AIIM].

3

Sebastian Bergmann Design and Implementation of a Workflow Engine

The usage scenarios of eZ Publish (see Section 3.2), for example, range from blogs and per-
sonal websites to community portals, company websites, webshops, business process man-
agement, enterprise resource planning, and document management in both governmental in-
stitutions and corporate environments.

1.2. Workflow Management

The Workflow Management Coalition (WfMC) describes workflow management as

the automation of a business process, in whole or parts, where documents, in-

formation or tasks are passed from one participant to another to be processed,

according to a set of procedural rules [RA01].

Georgakopoulos et. al. define workflow management as a

technology supporting the reengineering of business and information processes.

It involves: (1) defining workflows, i.e., describing those aspects of a process that

are relevant to controlling and coordinating the execution of its tasks [...], and (2)

providing for fast (re)design and (re)implementation of the processes as business

needs and information systems change [DG95].

Workflow management systems are software systems that enable workflow management.

There are two kinds of workflow management systems: those that are activity-based and those
that are entity-based. The former have their focus on the activities that are to be completed
throughout the workflow, the latter focus on entities, such as documents, that are processed by
a workflow [FG02].

The documentation of the OpenFlow workflow management system [OPENFLOW] summa-
rizes the purpose of an activity-based workflow management system as answering the question

”who must do what, when and how”:

• The workflow definition (or workflow schema) defines the sequence of activities that
are to be carried out. It specifies what should be done and when by the definition of
activities (represented by the nodes of a directed graph) and transitions (represented by
the edges of a directed graph).

Chapter 1. Problem Domain 4

Sebastian Bergmann Design and Implementation of a Workflow Engine

• An activity (the what part of the issue) represents something to be done: reviewing a
document, publishing a document, placing an order, sending an e-mail, and so on.

• Transitions define the appropriate sequence of activities for a process (the when part of
the issue).

• Each activity will have an associated application designed to carry out the job: the how

part.

• The who part is generally the user or system assigned to carry out the activity, through
its application.

Figure 1.1 shows a sample workflow that illustrates this: The green nodes represent the ac-
tivities that are to be completed throughout the workflow. The red edges between the nodes
represent the control flow. Depending on the input that is provided by a user with the ap-
propriate access rights (blue), the branch nodes chooses one of two possible actions that are
encapsulated by so-called service objects (yellow). After one of those two possible actions
has been performed, the merge nodes merges the control flow again.

The interaction with the user (to receive input, for instance) is performed through a so-called
worklist interface. The software system into which the workflow management system is in-
tegrated queries the workflow system whether a workflow instance is waiting for input that
can be provided by the current user. The user can then provide the input through the worklist
interface.

Chapter 1. Problem Domain 5

Sebastian Bergmann Design and Implementation of a Workflow Engine

Start

Input

Branch

Action Action

Merge

End

Role

User

Service Object Service Object

Figure 1.1.: Who must do what when and how?

Chapter 1. Problem Domain 6

Sebastian Bergmann Design and Implementation of a Workflow Engine

1.3. Summary

Business enterprises need to reduce the cost of doing business and continually develop new
services and products. Enterprise Content Management, as well as the related practices of
Document Management and Knowlege Management, helps with storing business-critical con-
tent (customer data, documents, etc.) in a central repository and in a unified way. Business
Process Management and Workflow Management provide the methodologies and software
that help with organizing the processes that operate on this content inside an organization.

Chapter 1. Problem Domain 7

Chapter 2.

Workflow Semantics

This chapter presents Petri nets as a formal way and workflow patterns as a more pragmatic
way to define the semantics of a workflow model.

2.1. Petri Nets

A Petri net is a mathematical representation for discrete distributed systems. It is a 5-tuple
(S,T,F,M0,W), where [JD01]

• S is a set of places.

• T is a set of transitions.

• F is a set of arcs known as a flow relation. The set F is subject to the constraint that no
arc may connect two places or two transitions, or more formally: F ⊆ (S×T)

⋃
(T ×S).

• M0 : S→ N is an initial marking, where for each place s ∈ S, there are ns ∈ N tokens.

• W : F→N is a set of arc weights, which assigns to each arc f ∈F some n∈N+ denoting
how many tokens are consumed from a place by a transition, or alternatively, how many
tokens are produced by a transition and put into each place.

A place that has an arc to a transition is called an input place, a place that has an arc from a
transition is called an output place. A place may contain any number of tokens. A distribution
of tokens over the places of a net is called a marking. When a transition is activated (or fired),
it consumes the tokens from its input places, performs some form of processing, and places a
specified number of tokens in its output places. These three steps are performed atomically.

8

Sebastian Bergmann Design and Implementation of a Workflow Engine

The activation of transitions is non-deterministic. This makes Petri nets well suited for the
modelling of concurrent behaviour in distributed systems.

Petri nets have been proposed for modelling workflows by van der Aalst [WA96], for instance,
because they provide formal semantics despite the graphical nature and an abundance of anal-

ysis techniques exists. Figures 2.1 to 2.6 show how the workflow primitives of the workflow
reference model [WfMC95] can be expressed using Petri nets.

t11 t12

Figure 2.1.: Causality t21

t22

Figure 2.2.: Iteration

t3

Figure 2.3.: AND-Split

t4

Figure 2.4.: AND-Join

t51

t52

Figure 2.5.: OR-Split

t61

t62

Figure 2.6.: OR-Join

Finite Automata are another formalism that can be used to describe workflows [ARK03].

2.2. Workflow Patterns

In Chapter 3 of his PhD thesis [BK03], Kiepuszewski lists requirements for workflow lan-

guages through workflow patterns.

Chapter 2. Workflow Semantics 9

Sebastian Bergmann Design and Implementation of a Workflow Engine

Much like the software design patterns [GoF94], these workflow patterns describe recurring
solutions to common problems. They are relevant to both the implementor and the user of a
workflow management system. The former uses the workflow patterns as a common vocabu-
lary for workflow description language constructs and to define the semantics of a workflow
model (see Chapter 5) whereas the latter uses them as a guide while formulating his work-
flow in the workflow system’s description language. The workflow patterns also faciliate the
comparison with other workflow systems with regard to expressiveness and power.

In Chapter 4 of his PhD thesis [BK03], Kiepuszewski maps the workflow patterns that he
identified to Petri nets to provide a formal foundation for this more pragmatic approach to
defining workflow semantics.

In this section we discuss the subset of the workflow patterns identified by Kiepuszewski that
is directly supported by the software that has been implemented as part of this thesis.

2.2.1. Basic Control Flow Patterns

The workflow patterns for basic control flow capture elementary aspects of process control

and closely match the definitions of elementary control flow concepts provided by the Workflow

Management Coalition in [WfMC95, WfMC99].

Sequence

The Sequence workflow pattern represents linear execution of workflow steps: one action of a
workflow is activated unconditionally (for example B in Figure 2.7) after another (for example
A in Figure 2.7) finished executing.

A B

Figure 2.7.: Sequence

Use Case Example: After an order is placed, the credit card specified by the customer is
charged.

Chapter 2. Workflow Semantics 10

Sebastian Bergmann Design and Implementation of a Workflow Engine

Parallel Split (AND-Split)

The Parallel Split workflow pattern divides one thread of execution (for example the one
that activates A in Figure 2.8) unconditionally into multiple parallel threads of execution (for
example the ones that start in B, C, and D in Figure 2.8).

A

B

C

D

Figure 2.8.: Parallel Split

B

C

D

E

Figure 2.9.: Synchronization

Use Case Example: After the credit card specified by the customer has been successfully
charged, the activities of sending a confirmation email and starting the shipping process can
be executed in parallel.

Synchronization (AND-Join)

The Synchronization workflow pattern synchronizes multiple parallel threads of execution (for
example the ones that end in B, C, and D in Figure 2.9) into a single thread of execution (for
example the one that starts in E in Figure 2.9).

Workflow execution continues once all threads of execution that are to be synchronized have
finished executing (exactly once).

Use Case Example: After the confirmation email has been sent and the shipping process has
been completed, the order can be archived.

The workflow patterns that have been discussed so far handle the unconditional routing of
control flow. We will now take a look at the workflow patterns for conditional routing.

Chapter 2. Workflow Semantics 11

Sebastian Bergmann Design and Implementation of a Workflow Engine

Exclusive Choice (XOR-Split)

The Exclusive Choice workflow pattern defines multiple possible paths (for example the ones
that start in B, C, and D in Figure 2.10) for the workflow of which exactly one is chosen (for
example the one that starts in C in Figure 2.10).

A

B

C

D

Figure 2.10.: Exclusive Choice

B

C

D

E

Figure 2.11.: Simple Merge

Use Case Example: After an order has been received, the payment can be performed by credit
card or bank transfer.

Simple Merge (XOR-Join)

The Simple Merge workflow pattern is to be used to merge the possible paths that are defined
by a preceding Exclusive Choice. It is assumed that of these possible paths exactly one is
taken (for example C in Figure 2.11) and no synchronization takes place.

Use Case Example: After the payment has been performed by either credit card or bank
transfer, the order can be processed further.

2.2.2. Advanced Branching and Synchronization

The workflow patterns for advanced branching and synchronization do not have straightfor-

ward support in most [of the] workflow engines [that Kiepuszewski evaluated] (see Table 7.1).
Nevertheless, they are quite common in real-life business scenarios.

Chapter 2. Workflow Semantics 12

Sebastian Bergmann Design and Implementation of a Workflow Engine

Multi-Choice (OR-Split)

The Multi-Choice workflow pattern defines multiple possible paths (for example the ones that
start in B, C, and D in Figure 2.12) for the workflow of which one or more are chosen (for
example the ones that start in B and D in Figure 2.12). It is a generalization of the Parallel
Split and Exclusive Choice workflow patterns.

A

B

C

D

Figure 2.12.: Multi-Choice

B

C

D

E

Figure 2.13.: Synchronizing Merge

Synchronizing Merge

The Synchronizing Merge workflow pattern is to be used to synchronize multiple parallel
threads of execution that are activated by a preceding Multi-Choice (for example the ones
that end in B and D in Figure 2.13).

Discriminator

The Discriminator workflow pattern can be applied when the assumption we made for the
Simple Merge workflow pattern does not hold. It can deal with merge situations where multiple
incoming branches may run in parallel.

It activates its outgoing node after being activated by the first incoming branch and then waits
for all remaining branches to complete before it resets itself. After the reset the Discriminator

can be triggered again.

Use Case Example: To improve response time, an action is delegated to several distributed
servers. The first response proceeds the flow, the other responses are ignored.

Chapter 2. Workflow Semantics 13

Sebastian Bergmann Design and Implementation of a Workflow Engine

2.2.3. Structural Patterns

The structural workflow patterns deal with restrictions that different workflow models can
impose.

Arbitrary Cycles

A common restriction workflow models impose is that arbitrary cycles, ie. one or more ac-
tivities are done repeatedly, are not supported. As an alternative, special loop constructs that
mark the start and end point of a structured cycle are offered.

Implicit Termination

The execution of the workflow is (successfully) terminated when there are no activated activi-
ties left and no other activity can be activated. This implicit termination of workflow execution
can be used in addition to explicit end activities.

2.2.4. Cancellation Patterns

Cancel Case

The execution of a workflow instance is cancelled.

Use Case Example: An order is cancelled.

2.3. Summary

This chapter presented Petri nets as a general, well understood and well researched, theory for
concurrency and the workflow patterns as an pragmatic approach to describe the semantics of
workflow routing constructs.

We will use the workflow patterns in Chapter 4 during the requirements analysis and in Chap-
ter 5 to define the semantics of the workflow model for the software that has been developed
as part of this thesis.

Chapter 2. Workflow Semantics 14

Chapter 3.

Technology

This chapter gives an introduction to the technology stack (PHP, eZ Publish, eZ Components)
that is relevant to and used by the software that has been implemented as part of this thesis.

3.1. PHP

PHP is a widely-used scripting language. Initially designed for Web programming, it has ma-
tured to a general-purpose programming language that supports both procedural and object-
oriented programming. PHP makes strong inroads into large-scale, business-critical Web sys-
tems. For instance, financial institutions develop and maintain BASEL II credit and insurance
rating tools using PHP and Yahoo! runs all its business on PHP (except the core of the search
engine). As of version 5, released July 2004, the PHP language features an object model that
is similar to the ones of Java and C# and integrates ideas from other programming languages.
The key technical contributor to PHP’s success is its simplicity, which translates into shorter
development cycles, easier maintenance, and lower training costs. The second one is social –
the very large and vibrant community around it, which develops not only PHP itself but also
thousands of open source applications that can be used off-the-shelf or as references for new
applications.

[SB05] gives an introduction to object-oriented programming with PHP 5.

15

Sebastian Bergmann Design and Implementation of a Workflow Engine

3.2. eZ Publish

eZ Publish is the Enterprise Content Management System developed by eZ Systems AS. With
its framework architechture, it is both an out-of-the-box solution as well as a platform that can
be customized and extended to suit the specific requirements of a customer.

Figure 3.1 shows an overview of the architecture of eZ Publish in its current version.

M
O
D
U
L
E
S

K
E
R
N
E
L

L
IB
S

ezdb ezfile ezimage [...]

ezxml ezpdf ezwebdav

Kernel

Content Shop User [...]Search

Figure 3.1.: The Architecture of eZ Publish 3

The libraries are the main building blocks of the system and are designed as reuseable general
purpose PHP classes. Although they are not dependant on other parts of the system, some of
them are not usable outside the scope of eZ Publish as the functionality they provide is tightly
coupled to eZ Publish.

The kernel makes up the system’s core and is responsible, among other things, for content
handling and versioning, access control, and workflows.

Whereas the kernel and the libraries provide rather low-level functionality, the modules im-
plement the higher-level functionality of the system. They provide web-based interfaces to
functionality that is, for instance, part of the kernel. For example, the content module provides
an interface that makes it possible to use a web browser to manage content. A module consists
of two components: at least one view and one or more optional fetch functions. The former

Chapter 3. Technology 16

Sebastian Bergmann Design and Implementation of a Workflow Engine

implement the actual web interface of the module. The latter allow for the extraction of data
through a module from within a template.

eZ Publish uses an object-oriented approach to organize and store content and allows for the
creation of custom structures that fit the needs of the customer. The system offers a selec-
tion of fundamental building blocks and mechanisms that together provide a flexible content
management solution. An actual data structure is described using something called a content

class. A content class is built up of attributes. An attribute can be thought of as a field, for
example the ”title” field in a structure designed to store news articles. The description of the
entire structure would be refferred to as the ”article class”. The characteristics of an attribute
inside the class are determined by the datatype that was chosen to represent that attribute.

ARTICLE CLASS

ARTICLE OBJECT

A
T
T
R
IB

U
T
E
S

ARTICLE OBJECT ARTICLE OBJECT

Title:

Intro:

Body:

Title:

Intro:

Body:

Title:

Intro:

Body:

Penguin Scooter Megaphone

The penguin is
called "Sigge"

He is an angry
old penguin

Sigge rides a
yellow scooter

He wants a
parking spot
for his scooter

Sigge has a
megaphone

"So watch out!",
he shouts.

Name Datatype

Title Text line

Intro Text line

Body XML field

Figure 3.2.: The Content Object abstraction of eZ Publish

A content object is an instance of a content class. While the class only defines the data struc-
ture, it is the content objects themselves that contain actual data. Once a content class is
defined, several instances of that class can be created. Figure 3.2 illustrates this relationship
of datatypes, attributes, content classes, and objects.

Chapter 3. Technology 17

Sebastian Bergmann Design and Implementation of a Workflow Engine

3.3. eZ Components

As part of the development on eZ Publish Telemark, the next major version of its eZ Publish
Enterprise Content Management System software, eZ Systems AS has begun refactoring of
core functionality from eZ Publish itself into a library of reusable PHP components that pro-
vide low-level functionality such as database abstraction, object persistence and caching. This
library is called eZ Components.

Figure 3.3 shows an overview of the eZ Components library. One of the design goals of
the library is to minimize the number of dependencies between its various components. A
component may only depend on the Base component. Optional dependencies are handled
through so-called tie-in components that tie two components together.

MISC

SignalSlot

SystemInformation

Workflow

ConsoleTools

Execution

AUTHENTICATION

AuthenticationMAIL

Mail

IMAGE

ImageConversion

ImageAnalysis

Graph

DATABASE

Database

DatabaseSchema

PersistentObject

FILE

Archive

Cache

Configuration

File

PhpGenerator

LOGGING

Debug

EventLog

OUTPUT

Template

Translation

Base

HTTP

Url

UserInput

Webdav

Feed

SEARCH

Search

MVC

MvcTools

MvcTemplateTiein

MvcMailTiein

Figure 3.3.: The eZ Components library for PHP 5.

The workflow engine that has been developed as part of this thesis is released under the
New BSD License as part of the eZ Components library and utilizes the Database and

Chapter 3. Technology 18

Sebastian Bergmann Design and Implementation of a Workflow Engine

DatabaseSchema components for database abstraction and the EventLog component for log-
ging abstraction.

Chapter 3. Technology 19

Chapter 4.

Requirements

This chapter is divided into two sections. Section 4.1 presents the workflow mechanism that
is part of eZ Publish 3, the current version of the Enterprise Content Management System by
eZ Systems AS. Section 4.2 discusses the requirements that the workflow engine for eZ Pub-
lish Telemark, the next version of eZ Publish, needs to fulfill.

4.1. eZ Publish 3

eZ Publish 3 comes with an integrated workflow mechanism that makes it possible to perform
different tasks with or without user interaction.

Starts

Consists ofConsists of

TRIGGER

WORKFLOW

WORKFLOW

GROUP
EVENTS

Figure 4.1.: The workflow system in eZ Publish 3

20

Sebastian Bergmann Design and Implementation of a Workflow Engine

Figure 4.1 shows the components that comprise this mechanism.

An event performs a specific task. eZ Publish 3 ships with a library of events and custom
events can be implemented in PHP.

A workflow defines an ordered sequence in which workflow events are executed and is initiated
by a trigger that is associated with a function of a module (see Section 3.2). It will start the
specified workflow either before or after that function has finished executing.

Choose class Choose language

Create object

Store input Display editor

Browse for existing object

Add selected object

Create new draftPublish in tree

Display parent location

Figure 4.2.: Workflow for publishing a content object in eZ Publish 3

Figure 4.2 shows the built-in workflow for publishing acontent object in eZ Publish 3. This
workflow can only be customized at the Publish in tree activity. This activity serves as the
trigger for a custom workflow that can be executed either before or after the activity was
executed.

4.2. eZ Publish Telemark

Both the architecture of the current eZ Publish version as well as its workflow feature have
shortcomings that are to be overcome:

Chapter 4. Requirements 21

Sebastian Bergmann Design and Implementation of a Workflow Engine

• Only some operations are workflows. This inconsistency has a negative effect on the
maintainability of the software as a whole.

• It is not easy to configure (hook in) the (internal) workflows. This makes extending the
software hard.

• Support for checking the state of executing workflows and control over them is limited.

• Support for conditions is limited.

Eventually, the workflow component should become an important part of the overall solution.
However, it must not be tightly integrated or too much dependent on other parts of the system
(and vice versa). This means that the workflow component must be flexible and provide good
interfaces which allow it to co-exist and plug into the software.

Georgakopoulos et. al. list general requirements for workflow management systems:

To effectively support [workflow management], organizations must evolve their

existing computing environments to a new distributed environment that: is component-
oriented, i.e. supports integration and interoperability among loosely-coupled

components [...], supports workflow applications corresponding to business or

information process implementations [...], ensures the correctness and reliabil-

ity of applications in the presence of concurrency and failures, and supports the

evolution, replacement, and addition of workflow applications and component

systems as processes are reengineered [DG95].

Following are the requirements set up by eZ Systems AS. We start with the requirements
that are relevant to the underlying workflow model of the workflow component that is to be
implemented:

• The workflow component should provide good support for expressing control flow using
the workflow patterns (see Chapter 5).

• Any non-trivial operation in eZ Publish, for instance the publishing, removal, and mod-
ification of content objects, should be a expressable through workflows.

• Workflows should be composable through a concept of sub-workflows.

Now we come to the requirements that relate to the actual software implementation:

• The workflow component has to be implemented using version 5 of the PHP program-
ming language.

Chapter 4. Requirements 22

Sebastian Bergmann Design and Implementation of a Workflow Engine

• It should be possible to integrate workflows with the background processes of eZ Publish
(run workflow as background process, interact with a background process).

• The workflow component should be customizable and extendable.

• The data storage (for workflow schemas and the persistence of workflow instances)
should be abstracted, relational databases must be supported as one backend.

• Versioning of workflow schemas should be supported.

• It should be possible to get information on the workflow instances that are currently
executing.

• It should be possible to manually control the workflow instances that are currently exe-
cuting.

• Simulation of workflow execution for debugging and testing purposes should be possi-
ble.

4.2.1. Use Cases

Here are two use cases that should be supported by the workflow engine component that is to
be implemented for eZ publish Telemark as part of this thesis. They are currently implemented
using custom extensions for eZ publish 3.

Multiple Approval, ISO Certification

This scenario is from a current customer of the eZ Publish ECMS providing quality assurance
for dairy products. The customer has information about the dairy products stored in eZ Pub-
lish. When they update any content there is a strict ISO-governed process to follow. This
process basically consists of a five-level approval:

• Bertrand produces an article.

• Approver Level 1: Bård decides who the next four approvers are.
He can also edit the article and send it back to its creator.

• Approver Level 2: Melissa reviews the article for political correctness.
She can edit the article and send it back one level.

Chapter 4. Requirements 23

Sebastian Bergmann Design and Implementation of a Workflow Engine

• Approver Level 3: Vidar reviews the article for sales arguments.
He can edit the article and and send it back one level.

• Approver Level 4: Jennifer does grammar checks on the article.
She can edit the article and and send it back one level.

• Publisher: Markus approves the final article and chooses the time and location for pub-
lication.

Creator

Approver Level 1

Approver Level 2

Approver Level 3

Approver Level 4

Publisher

Figure 4.3.: The Multiple Approval workflow

It is possible to see all on-going processes for an administrator. He or she can see each article
as well as its state and which person currently handles it.

Employment Process

This scenario is from the intranet of a current customer of the eZ Publish ECMS and is used
when a new employee is hired.

• One person creates an Employee object (including name, address, email, etc.).

Chapter 4. Requirements 24

Sebastian Bergmann Design and Implementation of a Workflow Engine

• An e-mail with a link for final approval of the employment is sent to the CEO.

• Once the CEO has approved the new employment three parallel activities are started:

– An e-mail to the system administrator is sent with the request to create e-mail and
other accounts.
The e-mail contains a link for the system administrator to click when he is done.

– An automatic process is started to set up accounts on different systems.

– An e-mail to the administration is sent with the request to buy new hardware for
the new employee.

• Once these three activities have been completed, the workflow continues.

• The Employee object is published.

• An e-mail with detailed information is sent to the new employee.

Create Employee Object

CEO

Cancel Process

System Administrator Automatic Process Administration

Publish Employee Object

Send E-Mail

Figure 4.4.: The Employment Process workflow

The on-going status for all employment processes at any time is available to anyone with the
appropriate permissions.

Chapter 4. Requirements 25

Sebastian Bergmann Design and Implementation of a Workflow Engine

4.3. Summary

This chapter discussed the requirements for the software that has been developed as part of this
thesis. This software will replace the workflow engine of eZ Publish 3 which has severe lim-
itations with regard to the underlying workflow model (only one directly supported workflow
pattern) and the software implementation (not easily extendable).

Chapter 4. Requirements 26

Chapter 5.

Workflow Model

This chapter presents the semantics and syntax of the workflow model that is the foundation
for the software that has been developed as part of this thesis.

5.1. Semantics

5.1.1. Activities and Transitions

The workflow model is activity-based. The activities that are to be completed throughout the
workflow and the transitions between them are mapped to the nodes and edges of a directed
graph. This choice was made to faciliate the application of the Graph-Oriented Programming
paradigm for the implementation of the software component that is discussed in Chapter 6.
Using a directed graph as the foundation for the workflow model makes it possible to define
the syntax of the workflow description language using the formalism of graph grammars (see
Section 5.2).

Graph Traversal and Execution Strategy

The execution of a workflow starts with the graph’s only Start node. A graph may have one
or more End nodes that explicitly terminate the workflow execution.

After a node has finished executing, it can activate one or more of its possible outgoing nodes.
Activation adds a node to a set of nodes that are waiting for execution. During each execution

27

Sebastian Bergmann Design and Implementation of a Workflow Engine

step, a node from this set is executed. When the execution of a node has been completed, the
node is removed from the set.

The workflow execution is implicitly terminated when no nodes are activated and no more
nodes can be activated (see the Implicit Termination workflow pattern from [BK03] that was
discussed in Section 2.2).

5.1.2. State and Workflow Variables

The workflow model supports state through the concept of workflow variables. Such a variable
can either be requested as user input (from an Input node) or be set and manipulated through
the VariableSet, VariableAdd, VariableSub, VariableMul, VariableDiv, VariableIncrement, and
VariableDecrement nodes.

While a VariableSet node may set the value of a workflow variable to any type that is supported
by the underlying programming language, the other variable manipulation nodes only operate
on numbers.

Variables are bound to the scope of the thread in which they were defined. This allows parallel
threads of execution to use variables of the same name without side effects.

Wait States

When the execution of a workflow reaches an Input node (see above), the execution is sus-
pended until such time when the user input has been provided and the execution can be re-
sumed.

5.1.3. Control Flow

The control flow semantics of the workflow model draws upon the workflow patterns from
[BK03] that were discussed in Section 2.2. The Sequence, Parallel Split, Synchronization, Ex-

clusive Choice, Simple Merge, Multi-Choice, Synchronizing Merge, and Discriminator work-
flow patterns are all directly supported by the workflow model.

Exclusive Choice and Multi-Choice nodes have branching conditions attached to them that
operate on workflow variables to make their control flow decisions.

Chapter 5. Workflow Model 28

Sebastian Bergmann Design and Implementation of a Workflow Engine

5.1.4. Action Nodes and Service Objects

So far we have only discussed nodes that control the flow and that can manipulate workflow
variables. We are still missing a type of nodes that actually performs an activity. This is where
the Action node comes into play.

When the execution of a workflow reaches an Action node, the business logic of the attached
service object is executed. Service Objects ”live” in the domain of the application into which
the workflow engine is embedded. They have read and write access to the workflow variables
to interact with the rest of the workflow.

5.1.5. Sub-Workflows

The workflow model supports sub-workflows to break down a complex workflow into parts
that are easier to conceive, understand, maintain, and which can be reused.

A sub-workflow is started when the respective Sub-Workflow node is reached during workflow
execution. The execution of the parent workflow is suspended while the sub-workflow is
executing. It is resumed once the execution of the sub-workflow has ended.

5.2. Syntax

5.2.1. Graph Structure

Graph Grammars are a formalism for the specification of visual languages. In the following,
we will use the reserved graph grammar variant presented by Zhang et al. in [DQZ01]. It
allows left-hand and right-hand graphs of a production to have an arbitrary number of nodes

and edges. This feature makes the graph grammars more expressive. A node in these graphs
is a two-level structure: a so-called super vertex contains named vertices, T (top), B (bottom),
L (left), R (right). The names correspond to the position of the vertex in the super vertex.

Figures 5.1 to 5.6 show the graph rewriting rules (productions) that make up the grammar for
our workflow model.

Chapter 5. Workflow Model 29

Sebastian Bergmann Design and Implementation of a Workflow Engine

The Axiom grammar rule shown in Figure 5.1 expresses that an empty graph (left-hand side)
can be transformed into a graph that contains three nodes: a Start node that has a Statement

node as its only outgoing node, which in turn has an End node as its only outgoing node.

The Reduction grammar rule shown in Figure 5.2 expresses that a Statement node can be added
to another Statement node.

B

Start

T

T

B

End

: = Statement

Figure 5.1.: Axiom

: =

1:T

2:B

2:B

T

1:T

B

Statement

Statement

Statement

Figure 5.2.: Reduction

1:T

2:B

.: =Statement Statement Statement

Parallel Split

Synchronization

2:B

T

B

T

B

T

1:T

B

Figure 5.3.: AND

1:T

2:B

.: =Statement Statement Statement

Exclusive Choice

Simple Merge

2:B

T

B

T

B

T

1:T

B

Figure 5.4.: XOR

A Statement node can either be replaced by applying the grammar rules shown in Figure 5.3
to 5.6 or by replacing it with a node of type Action, End, Input, Sub-Workflow, VariableSet,
VariableAdd, VariableSub, VariableMul, VariableDiv, VariableIncrement, and VariableDecre-

ment.

Chapter 5. Workflow Model 30

Sebastian Bergmann Design and Implementation of a Workflow Engine

1:T

2:B

.: =Statement Statement Statement

Multi-Choice

Synch. Merge

2:B

T

B

T

B

T

1:T

B

Figure 5.5.: OR

1:T

2:B

.: =Statement Statement Statement

Multi-Choice

Discriminator

2:B

T

B

T

B

T

1:T

B

Figure 5.6.: Discriminator

5.2.2. Conditions

The conditions that can be used with branching and input nodes are expressions built using
the following constructs: Not, And, Or, Xor, IsAnything, IsArray, IsBool, IsTrue, IsFalse,
IsFloat, IsInteger, IsEqual, IsNotEqual, IsGreaterThan, IsEqualOrGreaterThan, IsLessThan,
IsEqualOrLessThan, IsObject, and IsString.

The examples in Appendix B.2 show the syntax using which these constructs can be combined
to form condition expressions.

5.3. Summary

This chapter used the workflow patterns to describe the semantics and a graph grammar to
define the syntax of the workflow model that is the foundation for the software that has been
developed as part of this thesis.

The workflow model can be extended, for instance, with support for more workflow patterns,
by adding the respective node types.

Chapter 5. Workflow Model 31

Chapter 6.

Design and Implementation

This chapter discusses the design and implementation of the software that has been developed
as part of this thesis.

6.1. Architecture

The workflow engine that has been developed as part of this thesis has been designed and
implemented as three loosely coupled components. The Workflow component provides an
object-oriented framework to define workflows and an execution engine to execute them. The
WorkflowDatabaseTiein and WorkflowEventLogTiein components tie the Database and
EventLog components from the eZ Components library into the main Workflow component
for persistence and monitoring, respectively.

A workflow can be defined programmatically by creating and connecting objects (see Sec-
tion 6.5) that represent control flow constructs. The classes for these objects are provided by
the Workflow Definition API (see Appendix B for a reference). This API also provides the
functionality to save workflow definitions (ie. object graphs) to and load workflow definitions
from a data storage. Two data storage backends have been implemented, one for relational
database systems and another for XML files. Through the Workflow Execution API the execu-
tion of a workflow definition can be started (and resumed). Figure 6.1 shows the conceptual
architecture for the workflow engine.

32

Sebastian Bergmann Design and Implementation of a Workflow Engine

GUI XML
Mail, SOAP,

...

Wf Definition API Wf Execution API

Workflow Engine

Data Storage
(Workflow Schema Repository, Execution Persistence)

Figure 6.1.: Conceptual architecture for the workflow engine

The idea that a workflow system should be comprised of loosely coupled components is dis-
cussed, for instance, in [DAM01, DG95, PM99]. Manolescu states that

an object-oriented workflow architecture must provide abstractions that enable

software developers to define and enact how the work flows through the system

[DAM01].

The component-based workflow architecture Micro-Workflow encapsulates workflow features

in separate components. This architecture follows the Microkernel pattern which

applies to software systems that must be able to adapt to changing system re-

quirements. It separates a minimal functional core from extended functionality

and customer-specific parts. The microkernel also serves as a socket for plugging

in these extensions and coordinating their collaboration [FB96].

The minimalistic core of Micro-Workflow is comprised of three components that provide basic
workflow functionality:

• The process component implements an activity-based workflow model and provides the
abstractions required to build workflows.

Chapter 6. Design and Implementation 33

Sebastian Bergmann Design and Implementation of a Workflow Engine

• The execution component implements the functionality to execute workflows.

• The synchronization component allows developers to define dependencies within the
workflow domain.

On top of these core components other components, for instance for persistence (suspending
and resuming workflow execution), monitoring (status of running workflows), history (history
of executed workflows), and worklist management (human-computer interface), can be imple-
mented. Each of these components encapsulates a design decision and can be customized or
replaced.

6.2. Workflow Virtual Machine

This section proposes a so-called workflow virtual machine as the executing component of a
component-based workflow architecture.

Given the fact that standardization efforts, e.g. XPDL [WfMC05] proposed by the WfMC,

have essentially failed to gain universal acceptance [WA04], the problem of developing a

[workflow system] that supports changes in the [workflow description language] needs to be
addressed.

Fernandes et. al. propose to

split the [workflow system] into two layers: (1) a layer implementing a Workflow
Virtual Machine, which is responsible for most of the [workflow system] activities;

and (2) a layer where the different [workflow description languages] are handled,

which is responsible for making the mapping between each [workflow description

language] and the Workflow Virtual Machine [SF04].

A workflow virtual machine isolates the executing part of a workflow management system,
the backend, from the parts that users interact with, the frontend. This isolation allows for
the definition of a backend language to describe exactly the workflows that are supported by
the executer and its underlying workflow model. This backend language is not the workflow
description language users use to define their workflows. They use frontend languages that
can be mapped to the system’s backend language.

Chapter 6. Design and Implementation 34

Sebastian Bergmann Design and Implementation of a Workflow Engine

6.3. Graph-Oriented Programming

The manual of JBoss jBPM [JBOSS], a platform for multiple process languages support-
ing workflow, business process management, and process orchestration, introduces Graph-

Oriented Programming [as a] new implementation technique that serves as a basis for all

graph-based process languages.

Graph-Oriented Programming implements the graphical representation and the wait states of
a process language in an object-oriented programming language. The former can be achieved
by providing a framework of node classes. Objects of these classes represent the nodes in
the process graph, relations between these objects represent the edges. Such an object graph
can then be traversed for execution. These executions need to be persistable, for instance in a
relational database, to support the wait states.

The aforementioned node classes implement the Command design pattern [GoF94] and en-
capsulate an action and its parameters.

The executing part of the workflow engine is implemented in an Execution class. An object
of this class represents a workflow in execution. The execution object has a reference to the
current node. When the execution of a workflow is started, a new execution object is created
and the current node is set to the workflow’s start node. The execute() method that is to be
provided by the node classes is not only responsible for executing the node’s action, but also
for propagating the execution: a node can pass the execution that arrived in the node [to] one

of its leaving transitions to the next node.

Like Fowler in [MF05], the authors of the JBoss jBPM manual acknowledge the fact that
current software development relies more and more on domain specific languages. They see
Graph-Oriented Programming as a means to implement domain specific languages that de-

scribe how graphs can be defined and executed on top of an object-oriented programming
language.

In this context, a process language (like a workflow description language) is nothing more than

a set of Node implementations. The semantics of each node are defined by the implementation
of the execute() method in the respective node class. This language can be used as the back-
end language of a Workflow Virtual Machine (see Section 6.2). In this lanugage, the workflow
is represented as a graph of command objects. The workflow patterns (see Section 2.2) make
up the requirements for and can be mapped to the respective classes.

Chapter 6. Design and Implementation 35

Sebastian Bergmann Design and Implementation of a Workflow Engine

One of the advantages of using a domain specific language that Fowler gives in [MF05] regards
the involvement of lay programmers: domain experts who are not professional programmers

but program in domain specific languages as part of the development effort. In essence this
means that a software system that provides a domain specific language can be customized
and extended without knowledge of the underlying programming language that was used to
implement it.

6.4. Implementation Details

The workflow engine maintains a set of activated nodes. At the beginning of the execution,
the workflow’s start node is activated.

Listing 6.1 shows the main execution loop of the workflow virtual machine. As long as the
workflow execution has not explicitly ended (by reaching an End node), the next activated
node is executed. After the node has been successfully executed it is removed from the set of
activated nodes. In a situation where the set of activated nodes is not empty but none of the
activated nodes can be completed (because they are waiting for user input, for instance), the
workflow execution is suspended. When the set of activated nodes is empty, the execution of
the workflow ends.

During its execution, a node can activate an arbitrary amount of its outgoing nodes. Synchro-

nization, Synchronizing Merge, and Discriminator nodes, for instance, need to be activated
several times before they can complete their execution.

Parallel threads of execution that are branched by the Parallel Split and Multi-Choice (and
merged by the Synchronization, Synchronizing Merge, and Discriminator) workflow patterns
are executed serialized.

Chapter 6. Design and Implementation 36

Sebastian Bergmann Design and Implementation of a Workflow Engine

Listing 6.1: The workflow engine’s main execution loop
1 abstract class ezcWorkflowExecution
2 {
3 // ...
4

5 protected function execute ()
6 {
7 do
8 {
9 $executed = false;

10

11 foreach ($this ->activatedNodes as $key => $node)
12 {
13 if ($this ->cancelled && $this ->ended)
14 {
15 break;
16 }
17

18 if ($node instanceof ezcWorkflowNodeEnd &&
19 !$node instanceof ezcWorkflowNodeCancel &&
20 $this ->numActivatedNodes != $this ->

numActivatedEndNodes)
21 {
22 continue;
23 }
24

25 if ($node ->execute($this))
26 {
27 unset($this ->activatedNodes[$key]);
28 $this ->numActivatedNodes --;
29

30 if (!$this ->cancelled && !$this ->ended)
31 {
32 foreach ($this ->plugins as $plugin)
33 {
34 $plugin ->afterNodeExecuted($this , $node);
35 }
36 }
37

38 $executed = true;
39 }
40 }
41 }
42 while (!empty($this ->activatedNodes) && $executed);
43

44 if (!$this ->cancelled && !$this ->ended)
45 {
46 $this ->suspend ();
47 }
48 }
49

50 // ...
51 }

Chapter 6. Design and Implementation 37

Sebastian Bergmann Design and Implementation of a Workflow Engine

6.5. Example

Listing 6.2 shows an example of PHP code that programmatically creates an object graph for
a workflow.

The workflow in this example consists of seven nodes:

1. A Start node (line 10).

2. An Input node (lines 13–17) that requests a boolean input variable.

3. An Exclusive Choice node (line 21) that conditionally branches (lines 27–39) based
upon the value of the previously supplied input variable.

4. An Action node that has a PrintTrue service object attached to it (line 24).

5. An Action node that has a PrintFalse service object attached to it (line 25).

6. A Simple Merge node (lines 41–44).

7. An End node (line 11).

Listing 6.3 shows the object graph created by this PHP code serialized to XML, Appendix A
elaborates on this example and explains it in detail.

Chapter 6. Design and Implementation 38

Sebastian Bergmann Design and Implementation of a Workflow Engine

Listing 6.2: Creating an object graph using the Workflow Definition API
1 <?php
2 require_once ’Base/base.php’;
3

4 function __autoload($className)
5 {
6 ezcBase :: autoload($className);
7 }
8

9 $workflow = new ezcWorkflow(’Test’);
10

11 $input = new ezcWorkflowNodeInput(
12 array(
13 ’choice ’ => ’boolean ’
14)
15);
16

17 $workflow ->startNode ->addOutNode($input);
18

19 $branch = new ezcWorkflowNodeExclusiveChoice;
20 $branch ->addInNode($input);
21

22 $true = new ezcWorkflowNodeAction(’PrintTrue ’);
23 $false = new ezcWorkflowNodeAction(’PrintFalse ’);
24

25 $branch ->addConditionalOutNode(
26 new ezcWorkflowConditionIsTrue(
27 ’choice ’
28),
29 $true
30);
31

32 $branch ->addConditionalOutNode(
33 new ezcWorkflowConditionIsFalse(
34 ’choice ’
35),
36 $false
37);
38

39 $merge = new ezcWorkflowNodeSimpleMerge;
40 $merge ->addInNode($true)
41 ->addInNode($false)
42 ->addOutNode($workflow ->endNode);
43 ?>

Chapter 6. Design and Implementation 39

Sebastian Bergmann Design and Implementation of a Workflow Engine

Listing 6.3: Workflow specification in XML markup
<?xml version="1.0" encoding="UTF -8"?>

<workflow name="Test" version="1">
<node id="1" type="Start">

<outNode id="3"/>
</node>

<node id="2" type="End"/>

<node id="3" type="Input">
<variable name="choice" constraint="boolean"/>
<outNode id="4"/>

</node>

<node id="4" type="ExclusiveChoice">
<condition type="IsTrue" variable="choice">

<outNode id="5"/>
</condition >

<condition type="IsFalse" variable="choice">
<outNode id="6"/>

</condition >
</node>

<node id="5" type="Action" serviceObjectClass="PrintTrue">
<outNode id="7"/>

</node>

<node id="6" type="Action" serviceObjectClass="PrintFalse">
<outNode id="7"/>

</node>

<node id="7" type="SimpleMerge">
<outNode id="2"/>

</node>
</workflow >

Chapter 6. Design and Implementation 40

Sebastian Bergmann Design and Implementation of a Workflow Engine

6.6. Summary

The core of the workflow engine that has been developed as part of this thesis is a virtual
machine that executes workflows represented through object graphs. These object graphs can
be created programmatically through the software component’s Workflow Definition API. Al-
ternatively, a workflow definition can be loaded from an XML file. Object graph and XML
file are two different representations of a workflow definition that uses the so-called backend
language of the workflow engine’s core. Arbitrary frontend languages such as the XML Pro-
cess Definition Language (XPDL) [WfMC05], for instance, can be mapped to the workflow
engine’s backend language.

Chapter 6. Design and Implementation 41

Chapter 7.

Evaluation and Related Work

This chapter evaluates the workflow model (see Chapter 5) and the software (see Chapter 6)
that have been developed as part of this with regard to the requirements (see Chapter 4) and
compares it related work.

7.1. Evaluation

7.1.1. Workflow Model

The workflow model (see Chapter 5) that is the basis of the software that has been developed
as part of this thesis meets the requirements set up by eZ Systems AS (see Section 4.2). It pro-
vides good support for expressing control flow with its direct support of the basic control flow
patterns (see Section 2.2.1) and the workflow patterns for advanced branching and synchro-
nization (see Section 2.2.2). This allows the expression of operations such as the publishing,
removal, and modification of content objects in eZ Publish to be expressed through workflows.
The support of sub-workflows allows the decomposition of these workflows into manageable
and reusable parts.

Table 7.1 compares the expressiveness of the ezcWorkflow components’s backend language

with regard to the directly supported workflow patterns to other workflow systems. The com-
parison data is partially taken from [BK03].

42

Sebastian Bergmann Design and Implementation of a Workflow Engine

Workflow Pattern ez
cW

or
kfl

ow

YA
W

L

eZ
Pu

bl
is

h
3

G
al

ax
ia

R
ad

ic
or

e

V
is

ua
lW

or
kF

lo

Ve
rv

e
W

or
kfl

ow

St
af

fw
ar

e

M
Q

Se
ri

es
W

or
kfl

ow

Fo
rt

é
C

on
du

ct
or

H
P

C
ha

ng
eE

ng
in

e

Fu
jit

su
i-F

lo
w

SA
P

R
/3

W
or

kfl
ow

Sequence
√ √ √ √ √ √ √ √ √ √ √ √ √

Parallel Split
√ √

(
√

)
√ √ √ √ √ √ √ √ √ √

Synchronization
√ √ √ √ √ √ √ √ √ √ √ √

Exclusive Choice
√ √ √ √ √

(
√

)
√

(
√

)
√ √ √ √

Simple Merge
√ √

(
√

)
√ √ √ √ √ √ √ √ √

Multi-Choice
√ √

(
√

)
√

(
√

)
√ √ √

(
√

) (
√

)
Synchronizing Merge

√ √ √ √

Multi-Merge
√ √ √

Discriminator
√ √ √

(
√

)
√ √

Arbitrary Cycles
√ √ √ √ √ √ √ √

Implicit Termination
√ √ √

Multiple Instances
without Synchroniza-
tion

√ √ √ √ √

Multiple Instances
with A Priori Design
Time Knowledge

√ √ √ √ √ √ √ √ √

Multiple Instances
with A Priori Runtime
Knowledge

√
(
√

)

Multiple Instances
without A Priori
Runtime Knowledge

√

Deferred Choice
√

(
√

)
Interleaved Parallel
Routing

√

Milestone
√

Cancel Activity
√ √ √

Cancel Case
√ √ √ √ √ √ √

Table 7.1.: Comparison of Workflow Systems

Chapter 7. Evaluation and Related Work 43

Sebastian Bergmann Design and Implementation of a Workflow Engine

7.1.2. Implementation

The software that has been developed as part of this thesis meets the requirements set up by
eZ Systems AS (see Section 4.2). It has been implemented using version 5 of the PHP pro-
gramming language and is customizable and extendable. Its architecture allows the addition
and customization of components for workflow execution, persistence, history, monitoring,
and worklist management, for instance. The backend language that is understood by its virtual
machine can be extended by implementing new node classes. The data storage for workflow
schemas and the persistence of workflow instances has been abstracted, reference implemen-
tations for relational databases (workflow schemas and persistence) and XML files (workflow
schemas only) are available. The workflow schemas are stored in such a way that they are ver-
sioned, old and new versions of a workflow can be executed at the same time. The Workflow

Execution API provides access to information on the workflow instances that are currently
executing and it is possible to manually control the workflow instances that are currently ex-
ecuting. Through PHP’s native SOAP support, the Workflow Execution API can be exposed
as a web service, thus faciliating a distributed and federated workflow environment where
one workflow on one server can start another workflow on another server, for instance. A spe-
cial purpose implementation of the workflow virtual machine, ezcWorkflowTestExecution,
allows for the simulation of workflow execution for debugging and testing.

7.2. Related Work

7.2.1. Research

Micro-Workflow

Manolescu proposes a new workflow architecture that bridges the gap between the type of

functionality provided by current workflow systems and the type of workflow functionality

required in object-oriented applications. In his PhD thesis [DAM01], he discusses the design
and implementation of Micro-Workflow, an object-oriented framework that is built using this
architecture. One of Manolescu’s key findings is that more advanced workflow features can
be added to light-weight workflow core through composition.

Chapter 7. Evaluation and Related Work 44

Sebastian Bergmann Design and Implementation of a Workflow Engine

SWAMP

In his Diploma thesis [TS04], Schmidt discusses the design and implementation of the SWAMP
workflow system (SuSE Workflow and Management Platform). The goal of Schmidt’s thesis
is to replace an inhomogeneous legacy system with a unified workflow system that is easier
to maintain and that can be easily customized and extended. The motivations behind and the
requirements for the SWAMP workflow system have some similarities with the needs for the
software that has been developed as part of this thesis.

YAWL

In her Master thesis [SH05], Heijens discusses the design and implementation of YAWL.
YAWL is both a workflow language (Yet Another Workflow Language) and a workflow sys-
tem. The workflow model of YAWL is formally based on Petri nets and supports all the
workflow patterns with the exception of Implicit Termination.

7.2.2. Workflow Systems for PHP

eZ Publish 3

From the workflow patterns that were discussed in Section 2.2, the workflow system of eZ Pub-
lish 3 only supports the Sequence workflow pattern directly. Through its Multiplexer workflow
event, which starts another workflow from within a workflow, it indirectly supports the Paral-

lel Split workflow pattern.

The technical limitations of the workflow system in eZ Publish 3 (see Section 4.1) are rep-
resentative for other content management systems for the PHP platform (and most likely for
those for other platforms as well). The tight integration with the application into which the
workflow system is embedded makes the independent usage of the workflow system impossi-
ble.

Galaxia Workflow Engine

The Galaxia Workflow Engine [GF03] is an activity-based workflow engine for PHP that is
loosely based on OpenFlow [OPENFLOW].

Chapter 7. Evaluation and Related Work 45

Sebastian Bergmann Design and Implementation of a Workflow Engine

The graphical workflow description language supported by the Galaxia workflow engine con-
sists of six activity types:

1. Start represents the beginning of a workflow.

2. End represents the end of a workflow.

3. Activity represents an activity that is to be performed.

4. Switch represents a point of decision in the workflow and can be compared to the Exclu-

sive Choice workflow pattern.

5. Split is equivalent to the Parallel Split workflow pattern.

6. Join is equivalent to the Synchronization workflow pattern.

Galaxia does not have an explicit Simple Merge construct to merge the multiple possible
threads of a Switch construct. Instead, an Activity construct implicitly merges its incoming
threads.

Radicore

The Radicore toolkit for PHP features an activity-based workflow engine that is based on Petri
nets [TM04].

It supports

• Sequential Routing.

• Parallel Routing through AND-Split and AND-Join constructs.

• Conditional Routing through explicit and implicit OR-Split and OR-Join constructs.

• Iterative Routing using the OR-Split construct.

These constructs correspond to the Sequence, Parallel Split, Synchronization, Exclusive Choice,
and Simple Merge workflow patterns (see Section 2.2).

Chapter 7. Evaluation and Related Work 46

Sebastian Bergmann Design and Implementation of a Workflow Engine

7.3. Summary

Workflow systems such as Micro-Workflow [DAM01] and YAWL [SH05], for instance, that
have been implemented as part of academic research often excel only in the aspect that is
specific to the research while neglecting other aspects that are relevant to a workflow system.
One of the goals of this thesis was to combine aspects such as component-based workflow
architecture, workflow virtual machine, and workflow patterns to create a workflow system
that meets industry requirements.

The existing workflow systems for PHP do not lend themselves well to customization and
extension with regard to the requirements set up by eZ Systems AS. This fact, together with
eZ Systems’ requirement for clear intellectual property, lead to the development of a new
workflow engine instead of starting with an existing one.

Chapter 7. Evaluation and Related Work 47

Chapter 8.

Conclusion and Future Work

8.1. Conclusion

This thesis reviewed previous research such as [BK03, DAM01, PM99, SF04] and combined
it for the first time in an effort to design and implement a workflow system that meets industry
requirements.

The pragmatic approach to describe the semantics of workflow routing constructs through
Workflow Patterns [BK03] provides a good foundation for the Backend Language of a Work-

flow Virtual Machine [SF04] that executes workflow definitions represented through object
graphs in a component-based workflow architecture [DAM01].

The software that has been developed as part of this thesis is a contribution to the PHP com-
munity. It provides an extendable framework to define workflows and a virtual machine for
the execution of these definitions that can be embedded into a PHP application, thus extending
it with workflow capabilities. This workflow system can be customized and extended through
the composition of components, its workflow model can be customized and extended through
the classes that define the control flow constructs. It is neither bound to a specific application
into which it is embedded nor to a specific workflow description language, thus providing
more degrees of freedom with regard to use – and re-use – of the workflow engine.

48

Sebastian Bergmann Design and Implementation of a Workflow Engine

8.2. Future Work

8.2.1. Analysis and Verification of Workflows

The current implementation of the software that has been developed as part of this thesis has
basic support for the analysis and verification of workflow specifications. Future versions of
the software can implement more advanced verification tools based upon the abundance of

analysis techniques that exists for Petri nets [WA96].

8.2.2. Workflow Model

The workflow model can be extended, for instance, with support for more workflow patterns,
by adding the respective node types.

8.2.3. Aspect-Oriented Programming

Aspect-Oriented Programming allow[s] programming by making quantified programmatic as-

sertions over programs written by programmers oblivious to such assertions [RF00]. These as-
sertions make quantified statements about which code is to execute in which circumstances.

Section 2 of [SB06] presents an overview of the various implementations of AOP for PHP
that support AOP by extending the base programming language. The combination of Graph-
Oriented Programming with Aspect-Oriented Programming would add yet another possibility
to faciliate AOP with the PHP platform, but without the need to change or extend the base
programming language. The workflow model discussed in Chapter 5 would serve as the Join-
point Model of an AOP system that can be implemented as an additional component for the
software that was presented in Chapter 6. Pointcuts such as node of type X is executed could
then be used to express when additional code is to be run during workflow execution. Com-
pared to the implicit callgraph structure on which language-level AOP systems operate, the
explicit graph structure of workflows makes the idea of AOP intuitively clear.

This combination of Aspect-Oriented Programming with Graph-Oriented Programming could
then be compared to Aspect-Oriented Programming in general as well as to Adaptive Pro-
gramming which Lieberherr describes as the special case of Aspect-Oriented Programming

(AOP) where some of the building blocks are expressible in terms of graphs [KL97].

Chapter 8. Conclusion and Future Work 49

Sebastian Bergmann Design and Implementation of a Workflow Engine

8.2.4. Compilation of Workflows

Model-Driven Architecture (MDA) separates business and application logic from underlying

platform technology [JM01] and supports the Model-Driven Engineering (MDE) of software
systems. It offers a promising approach to address the inability of third-generation languages

to alleviate the complexity of platforms and express domain concepts effectively [DS06].

In this context the possibility could be evaluated whether the software that has been developed
as part of this thesis can be extended with a code generator component that can compile a
workflow specification into a ready-to-use application.

Chapter 8. Conclusion and Future Work 50

Appendix A.

Tutorial

This appendix serves as an introduction to the Workflow Definition API and Workflow Execu-

tion API (see Figure 6.1).

A.1. Workflow Definition API

A.1.1. Defining a New Workflow

In this subsection, we define a new workflow by creating an object graph of ezcWorkflowNode
objects. Once we learned how to define and store such a workflow definition, we we will look
at loading and editing an existing workflow definition.

Creating the Object Graph

First, we load the ezcBase component (line 2) and set up its classloader that is based on PHP’s
__autoload interceptor (lines 4–7).

1 <?php
2 require_once ’Base/base.php’;
3

4 function __autoload($className)
5 {
6 ezcBase :: autoload($className);
7 }

51

Sebastian Bergmann Design and Implementation of a Workflow Engine

For the following code listings, lines 1–7 will always be the same as in the listing above.

We create a new object of the ezcWorkflow class (line 8). This object represents the workflow
that we are about to define. The constructor of the class expects a string with a name for the
workflow. This name is unique for the schema repository to which the workflow may be saved
later.

8 $workflow = new ezcWorkflow(’Test’);

We define an Input node by creating an object of the ezcWorkflowNodeInput class. The
constructor expects an associative array where the key stands for the name of an input vari-
able and the value may hold arbitrary expectations for this variable. These expectations are
evaluated and checked by the application that uses the workflow component.

Then we set up the Input node as an outgoing node of the Start node.

9 $input = new ezcWorkflowNodeInput(
10 array(
11 ’choice ’ => new ezcWorkflowConditionIsBool
12)
13);
14

15 $workflow ->startNode ->addOutNode($input);

For the purposes of this example we assume that ’choice’ => ’boolean’ means that a
boolean input variable of name ”choice” is expected.

We now define an Exclusive Choice node that uses the value of the input variable to activate
one of two possible paths. Before we set up its outgoing nodes (and the related conditions),
we set up the Exclusive Choice as an outgoing node of the Input node (lines 16–17).

16 $branch = new ezcWorkflowNodeExclusiveChoice;
17 $branch ->addInNode($input);

In the next step, we create two objects, $true and $false of the ezcWorkflowNodeAction

class (lines 18–19). The constructor expects the name of a class that implements the
ezcWorkflowServiceObject interface. Such a class encapsulates the business logic that is
associated with the Action node.

18 $true = new ezcWorkflowNodeAction(’PrintTrue ’);
19 $false = new ezcWorkflowNodeAction(’PrintFalse ’);

Appendix A. Tutorial 52

Sebastian Bergmann Design and Implementation of a Workflow Engine

Let us take a look at what an implementation of the ezcWorkflowServiceObject interface
looks like:

<?php
class PrintTrue implements ezcWorkflowServiceObject
{

public function execute(ezcWorkflowExecution $e)
{

print "TRUE\n";
}

public function __toString ()
{

return ’PrintTrue ’;
}

}
?>

The ezcWorkflowServiceObject interface requires two methods, execute()
and __toString(). The former implements the business logic of the service
object and is passed the execution context as its only argument. The latter provides
a textual representation of the service object.

Using the $branch object’s addConditionalOutNode() method, we can now set up the
Action node that is represented by the $true object as an conditional outgoing node (lines
20–26). This method expects an ezcWorkflowCondition object as its first argument. This
object encapsulates the branching condition.

For our example we use the ezcWorkflowConditionIsTrue class. The constructor of this
class expects the name of a workflow variable that is to be evaluated.

20 $branch ->addConditionalOutNode(
21 new ezcWorkflowConditionVariable(
22 ’choice ’,
23 new ezcWorkflowConditionIsTrue
24),
25 $true
26);

Section B.2 shows the available ezcWorkflowCondition implementations.

Analogous, we set up the Action node that is represented by the $false object as a second
conditional outgoing node (lines 27–33).

Appendix A. Tutorial 53

Sebastian Bergmann Design and Implementation of a Workflow Engine

27 $branch ->addConditionalOutNode(
28 new ezcWorkflowConditionVariable(
29 ’choice ’,
30 new ezcWorkflowConditionIsFalse
31),
32 $false
33);

Finally, we create a new object of the ezcWorkflowNodeSimpleMerge class (line 34). We
set up the two Action nodes as incoming nodes and the End node as an outgoing node of this
Simple Merge node (lines 35–37).

34 $merge = new ezcWorkflowNodeSimpleMerge;
35 $merge ->addInNode($true)
36 ->addInNode($false)
37 ->addOutNode($workflow ->endNode);

This concludes the creation of the object graph that represents the workflow specification
and can now be stored in a workflow schema repository. Currently two workflow schema
repository backends are supported, XML files and relational databases.

Writing the Workflow Schema to an XML File

The following code snippet demonstrates how to serialize the object graph to an XML repre-
sentation.

38 $definition = new ezcWorkflowDefinitionStorageXml;
39 $definition ->save($workflow);
40 ?>

The constructor of the ezcWorkflowDefinitionStorageXml class accepts an optional argu-
ment that specifies the directory in which the XML files are stored.

Listing A.1 shows the resulting XML document that is written to a file named Test_1.xml.
The filename includes the name of the workflow definition and its version number.

Frontend languages such as the XML Process Definition Language (XPDL) [WfMC05] can
be transformed to this format using XSL Transformations (XSLT) [W3C07], for instance.

Appendix A. Tutorial 54

Sebastian Bergmann Design and Implementation of a Workflow Engine

Listing A.1: Workflow specification in XML markup
<?xml version="1.0" encoding="UTF -8"?>

<workflow name="Test" version="1">
<node id="1" type="Start">

<outNode id="3"/>
</node>

<node id="2" type="End"/>

<node id="3" type="Input">
<variable name="choice">

<condition type="IsBool"/>
</variable >
<outNode id="4"/>

</node>

<node id="4" type="ExclusiveChoice">
<condition type="Variable" name="choice">

<condition type="IsTrue"/>
<outNode id="5"/>

</condition >

<condition type="Variable" name="choice">
<condition type="IsFalse"/>
<outNode id="6"/>

</condition >
</node>

<node id="5" type="Action" serviceObjectClass="PrintTrue">
<outNode id="7"/>

</node>

<node id="6" type="Action" serviceObjectClass="PrintFalse">
<outNode id="7"/>

</node>

<node id="7" type="SimpleMerge">
<outNode id="2"/>

</node>
</workflow >

Appendix A. Tutorial 55

Sebastian Bergmann Design and Implementation of a Workflow Engine

Saving the Workflow Schema to a Database

The constructor of the ezcWorkflowDatabaseDefinition class expects and object of the
ezcDbHandler class. In line 38 we create such an object and connect to a MySQL database
server. Then we can use the save() method of the ezcWorkflowDatabaseDefinition ob-
ject to save the object graph to the database.

38 $db = ezcDbFactory :: create(’mysql :// test@localhost/test’);
39 $definition = new ezcWorkflowDatabaseDefinition($db);
40 $definition ->save($workflow);
41 ?>

Visualizing a Workflow Graph

The next code snippet shows how to use the ezcWorkflowVisitorVisualization class to
generate a description of the object graph in the DOT graph description language.

38 $visitor = new ezcWorkflowVisitorVisualization;
39 $workflow ->accept($visitor);
40 print $visitor;
41 ?>

Listing A.2 shows the resulting DOT graph description, Figure A.1 shows the workflow graph
rendered using GraphViz from this graph description.

A.1.2. Loading an Existing Workflow

Loading a Workflow Schema from an XML File

The following code snippet demonstrates how to load an object graph from an XML represen-
tation.

8 $definition = new ezcWorkflowDefinitionStorageXml;
9 $workflow = $definition ->loadByName(’Test’);

10 ?>

The loadByName() method accepts an optional second argument that specifies the version
number of the workflow definition that is to be loaded. By default (ie. without the second
argument) the newest version of the workflow is loaded.

Appendix A. Tutorial 56

Sebastian Bergmann Design and Implementation of a Workflow Engine

Listing A.2: Workflow specification in DOT markup
digraph Test {
node1 [label ="Start "]
node3 [label ="Input "]
node4 [label =" Exclusive Choice "]
node5 [label =" PrintTrue "]
node7 [label =" Simple Merge"]
node2 [label ="End"]
node6 [label =" PrintFalse "]

node1 -> node3
node3 -> node4
node4 -> node5 [label=" choice is true"]
node4 -> node6 [label=" choice is false"]
node5 -> node7
node7 -> node2
node6 -> node7
}

Loading a Workflow Schema from a Database

Loading a workflow schema from a database is analogous to loading fron an XML file:

8 $db = ezcDbFactory :: create(’mysql :// test@localhost/test’);
9 $definition = new ezcWorkflowDatabaseDefinition($db);

10 $workflow = $definition ->loadByName(’Test’);

For the following code listings, lines 8–10 will always be the same as in the listing above.

A.2. Workflow Execution API

The software that has been developed as part of this thesis offers three workflow execution en-
gines: ezcWorkflowExecutionNonInteractive, ezcWorkflowDatabaseExecution, and
ezcWorkflowTestExecution. This sections shows how they are used.

A.2.1. Workflow with Wait States

For the execution of a workflow that contains wait states (for example Input nodes), an exe-
cution engine is required that supports persistence. The ezcWorkflowDatabaseExecution

Appendix A. Tutorial 57

Sebastian Bergmann Design and Implementation of a Workflow Engine

Start

Input

Exclusive Choice

PrintTrue

choice is true

PrintFalse

choice is false

Simple Merge

End

Figure A.1.: Workflow graph rendered using GraphViz

class implements such an execution engine and uses a relational database for persistence stor-
age.

In the following code snippet we start start the execution of a previously loaded workflow.

11 $execution = new ezcWorkflowDatabaseExecution($db);
12 $execution ->workflow = $workflow;
13 $executionId = $execution ->start();

As our workflow contains an Input node, the execution will not complete and will be sus-
pended. The $executionId uniquely identifies the suspended workflow execution. It can be
used, for instance, to resume the workflow execution once the requested input data has been
provided:

Appendix A. Tutorial 58

Sebastian Bergmann Design and Implementation of a Workflow Engine

14 $execution = new ezcWorkflowDatabaseExecution($db);
15 $execution ->resume($executionId , array(’choice ’ => true));
16 ?>

A.2.2. Workflow without Wait States

A workflow that contains no wait states can be executed in one pass. The workflow engine is
not required to support persistence for this. The ezcWorkflowExecutionNonInteractive

class implements a workflow engine without persistence support that can execute such work-
flow without the overhead of a persistence layer.

11 $execution = new ezcWorkflowExecutionNonInteractive;
12 $execution ->workflow = $workflow;
13 $execution ->start ();
14 ?>

A.2.3. Simulating Workflow Execution

The workflow engine implemented by the ezcWorkflowTestExecution class can be used
for testing both the workflow system itself as well as workflow definitions.

11 $execution = new ezcWorkflowTestExecution;
12 $execution ->workflow = $workflow;
13 $execution ->setInputVariable(’choice ’, true);
14 $execution ->start ();
15 ?>

The setInputVariable() method allows for the mocking of Input nodes, thus making it
possible to execute and test interactive workflows without interaction.

Appendix A. Tutorial 59

Appendix B.

API Reference

This appendix provides an API reference for the software that has been developed as part of
this thesis.

B.1. Graph Node Classes

Objects of the ezcWorkflowNode classes represent the nodes of a workflow.

B.1.1. ezcWorkflowNode

ezcWorkflowNode (see Figure B.1) is the abstract base class for all graph node classes.

B.1.2. Start and End Nodes

ezcWorkflowNodeStart

Incoming Nodes: 0

Outgoing Nodes: 1

An object of the ezcWorkflowNodeStart class (see Figure B.1) represents the one and only
start node of a workflow. The execution of the workflow starts here.

60

Sebastian Bergmann Design and Implementation of a Workflow Engine

e
zc

W
o

rk
fl

o
w

N
o

d
e

+
 W

A
IT

IN
G

_F
O

R
_A

C
T

IV
A

T
IO

N
+

 W
A

IT
IN

G
_F

O
R

_E
X

E
C

U
T

IO
N

#
 $

id
#

 $
in

N
o

d
e

s
#

 $
o

u
tN

o
d

e
s

#
 $

m
in

In
N

o
d

e
s

#
 $

m
a

x
In

N
o

d
e

s
#

 $
m

in
O

u
tN

o
d

e
s

#
 $

m
a

x
O

u
tN

o
d

e
s

#
 $

n
u

m
In

N
o

d
e

s
#

 $
n

u
m

O
u

tN
o

d
e

s
#

 $
co

n
fi

g
u

ra
ti

o
n

#
 $

a
ct

iv
a

ti
o

n
S

ta
te

#
 $

a
ct

iv
a

te
d

Fr
o

m
#

 $
st

a
te

#
 $

th
re

a
d

Id
#

 $
in

te
rn

a
lC

a
ll

+
 _

_c
o

n
st

ru
ct

()
+

 a
d

d
In

N
o

d
e

()
+

 r
e

m
o

v
e

In
N

o
d

e
()

+
 a

d
d

O
u

tN
o

d
e

()
+

 r
e

m
o

v
e

O
u

tN
o

d
e

()
+

 g
e

tI
d

()
+

 s
e

tI
d

()
+

 s
e

tA
ct

iv
a

ti
o

n
S

ta
te

()
+

 g
e

tI
n

N
o

d
e

s(
)

+
 g

e
tO

u
tN

o
d

e
s(

)
+

 g
e

tC
o

n
fi

g
u

ra
ti

o
n

()
+

 g
e

tS
ta

te
()

+
 s

e
tS

ta
te

()
+

 g
e

tA
ct

iv
a

te
d

Fr
o

m
()

+
 s

e
tA

ct
iv

a
te

d
Fr

o
m

()
+

 g
e

tT
h

re
a

d
Id

()
+

 s
e

tT
h

re
a

d
Id

()
+

 v
e

ri
fy

()
+

 a
cc

e
p

t(
)

+
 a

ct
iv

a
te

()
+

 i
sE

xe
cu

ta
b

le
()

+
 e

xe
cu

te
()

+
 _

_t
o

S
tr

in
g

()
#

 a
ct

iv
a

te
N

o
d

e
()

#
 i

n
it

S
ta

te
()

e
zc

W
o

rk
fl

o
w

N
o

d
e

A
ct

io
n

+
 _

_c
o

n
st

ru
ct

()
+

 e
xe

cu
te

()
+

 _
_t

o
S

tr
in

g
()

#
 c

re
a

te
O

b
je

ct
()

e
zc

W
o

rk
fl

o
w

N
o

d
e

A
ri

th
m

e
ti

cB
a

se

#
 $

v
a

ri
a

b
le

#
 $

o
p

e
ra

n
d

+
 _

_c
o

n
st

ru
ct

()
+

 e
xe

cu
te

()
#

 d
o

E
xe

cu
te

()

e
zc

W
o

rk
fl

o
w

N
o

d
e

B
ra

n
ch

#
 $

m
in

O
u

tN
o

d
e

s
#

 $
m

a
x

O
u

tN
o

d
e

s

#
 a

ct
iv

a
te

O
u

tg
o

in
g

N
o

d
e

s(
)

e
zc

W
o

rk
fl

o
w

N
o

d
e

E
n

d

#
 $

m
in

O
u

tN
o

d
e

s
#

 $
m

a
x

O
u

tN
o

d
e

s

+
 e

xe
cu

te
()

e
zc

W
o

rk
fl

o
w

N
o

d
e

In
p

u
t

+
 _

_c
o

n
st

ru
ct

()
+

 e
xe

cu
te

()

e
zc

W
o

rk
fl

o
w

N
o

d
e

M
e

rg
e

#
 $

m
in

In
N

o
d

e
s

#
 $

m
a

x
In

N
o

d
e

s
#

 $
st

a
te

#
 p

re
p

a
re

A
ct

iv
a

te
()

#
 d

o
M

e
rg

e
()

#
 i

n
it

S
ta

te
()

e
zc

W
o

rk
fl

o
w

N
o

d
e

S
ta

rt

#
 $

m
in

In
N

o
d

e
s

#
 $

m
a

x
In

N
o

d
e

s

+
 e

xe
cu

te
()

e
zc

W
o

rk
fl

o
w

N
o

d
e

S
u

b
W

o
rk

fl
o

w

#
 $

st
a

te

+
 _

_c
o

n
st

ru
ct

()
+

 e
xe

cu
te

()
+

 _
_t

o
S

tr
in

g
()

e
zc

W
o

rk
fl

o
w

N
o

d
e

V
a

ri
a

b
le

S
e

t

+
 _

_c
o

n
st

ru
ct

()
+

 e
xe

cu
te

()
+

 _
_t

o
S

tr
in

g
()

e
zc

W
o

rk
fl

o
w

N
o

d
e

V
a

ri
a

b
le

U
n

se
t

+
 _

_c
o

n
st

ru
ct

()
+

 e
xe

cu
te

()
+

 _
_t

o
S

tr
in

g
()

e
zc

W
o

rk
fl

o
w

V
is

it
a

b
le

+
 a

cc
e

p
t(

)

Figure B.1.: The ezcWorkflowNode class and its subclasses

Appendix B. API Reference 61

Sebastian Bergmann Design and Implementation of a Workflow Engine

Creating an object of the ezcWorkflow automatically creates the start node for this new work-
flow.

1 $workflow = new ezcWorkflow(’Name’);
2 $workflow ->startNode; // This property holds the ezcWorkflowNodeStart

object.

ezcWorkflowNodeEnd

Incoming Nodes: 1

Outgoing Nodes: 0

An object of the ezcWorkflowNodeEnd class (see Figure B.1) represents an end node of a
workflow. A workflow must have at least one end node. The execution of the workflow ends
when an end node is reached.

Creating an object of the ezcWorkflow automatically creates a default end node for this new
workflow.

1 $workflow = new ezcWorkflow(’Name’);
2 $workflow ->endNode; // This property holds an ezcWorkflowNodeEnd object

.

ezcWorkflowNodeCancel

Incoming Nodes: 1

Outgoing Nodes: 0..1

The ezcWorkflowNodeCancel class implements the Cancel Case workflow pattern.

1 $workflow = new ezcWorkflow(’Name’);
2 $workflow ->endNode = new ezcWorkflowNodeCancel;

As soon as a node of the ezcWorkflowNodeCancel type is activated, the complete workflow
instance is removed. This includes currently executing nodes, those which may execute at
some future time and all parent and sub-workflows. The workflow instance is recorded as
having completed unsuccessfully.

Appendix B. API Reference 62

Sebastian Bergmann Design and Implementation of a Workflow Engine

ezcWorkflowNodeFinally

Incoming Nodes: 0

Outgoing Nodes: 1

An object of the ezcWorkflowNodeFinally class (see Figure B.1) represents the start node
of a sequence of final activities that is executed when a workflow execution is cancelled.

Creating an object of the ezcWorkflow class automatically creates the finally node for this
new workflow.

1 $workflow = new ezcWorkflow(’Name’);
2 $workflow ->endNode = new ezcWorkflowNodeCancel;
3 $workflow ->finallyNode ->addOutNode(/* ... */);

B.1.3. ezcWorkflowNodeAction

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeAction class (see Figure B.1) represents an activity node.
When the node is reached, the business logic that is implemented by the associated service

object is executed.

1 class MyAction implements ezcWorkflowServiceObject
2 {
3 public function execute(ezcWorkflowExecution $execution)
4 {
5 // ...
6 }
7

8 public function __toString ()
9 {

10 // ...
11 }
12 }
13

14 $action = new ezcWorkflowNodeAction(’MyAction ’);

Appendix B. API Reference 63

Sebastian Bergmann Design and Implementation of a Workflow Engine

B.1.4. ezcWorkflowNodeSubWorkflow

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeSubWorkflow class (see Figure B.1) represents a sub-
workflow. When the node is reached, the specified sub-workflow is started. The workflow is
suspended until the sub-workflow has finished executing.

1 $subWorkflow = new ezcWorkflow(’Sub -Workflow Name’);
2 // ...
3

4 $subWorkflow = new ezcWorkflowNodeSubWorkflow(’Sub -Workflow Name’);

Workflow variables can be passed from the parent workflow to the child worflow and vice
versa. The example below creates a sub-workflow node that passes the parent execution’s
variable x to the variable y in the child execution when the sub-workflow is started. When it
ends, the child execution’s y variable is passed to the parent execution as z.

1 $subWorkflow = new ezcWorkflow(’Sub -Workflow Name’);
2 // ...
3

4 $subWorkflow = new ezcWorkflowNodeSubWorkflow(
5 array(
6 ’workflow ’ => ’IncrementVariable ’,
7 ’variables ’ => array(
8 ’in’ => array(
9 ’x’ => ’y’

10),
11 ’out’ => array(
12 ’y’ => ’z’
13)
14)
15)
16);

Appendix B. API Reference 64

Sebastian Bergmann Design and Implementation of a Workflow Engine

B.1.5. Workflow Variables

ezcWorkflowNodeInput

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeInput class (see Figure B.1) represents an input node.
When the node is reached, the workflow engine will suspend the workflow execution if the
specified input data is not available (first activation). While the workflow is suspended, the ap-
plication that embeds the workflow engine may supply the input data and resume the workflow
execution (second activation of the input node). Input data is stored in a workflow variable.

ezcWorkflowNodeVariableSet

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeVariableSet class sets a specified workflow variable to
a given value.

1 $set = new ezcWorkflowNodeVariableSet(
2 array(’variable name’ => $value)
3);

ezcWorkflowNodeVariableUnset

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeVariableUnset class unsets a specified workflow vari-
able.

1 $unset = new ezcWorkflowNodeVariableUnset(’variable name’);

Appendix B. API Reference 65

Sebastian Bergmann Design and Implementation of a Workflow Engine

ezcWorkflowNodeArithm et icBase

$variable
$operand

+ __construct()
+ execute()
doExecute()

ezcWorkflowNodeVariableAdd

+ __toString()
doExecute()

ezcWorkflowNodeVariableDecrem ent

$configurat ion

+ __toString()
doExecute()

ezcWorkflowNodeVariableDiv

+ __toString()
doExecute()

ezcWorkflowNodeVariableIncrem ent

$configurat ion

+ __toString()
doExecute()

ezcWorkflowNodeVariableMul

+ __toString()
doExecute()

ezcWorkflowNodeVariableSub

+ __toString()
doExecute()

ezcWorkflowNode

+ WAITING_FOR_ACTIVATION
+ WAITING_FOR_EXECUTION
$id
$inNodes
$outNodes
$m inInNodes
$m axInNodes
$m inOutNodes
$m axOutNodes
$num InNodes
$num OutNodes
$configurat ion
$act ivat ionState
$act ivatedFrom
$state
$threadId
$internalCall

+ __construct()
+ addInNode()
+ rem oveInNode()
+ addOutNode()
+ rem oveOutNode()
+ get Id()
+ set Id()
+ setAct ivat ionState()
+ get InNodes()
+ getOutNodes()
+ getConfigurat ion()
+ getState()
+ setState()
+ getAct ivatedFrom ()
+ setAct ivatedFrom ()
+ getThreadId()
+ setThreadId()
+ verify()
+ accept()
+ act ivate()
+ isExecutable()
+ execute()
+ __toString()
act ivateNode()
initState()

Figure B.2.: The ezcWorkflowNodeArithmeticBase class and its subclasses

ezcWorkflowNodeVariableAdd

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeVariableAdd class adds a given value, either a constant
or the value of another workflow variable, to a specified workflow variable.

1 $add = new ezcWorkflowNodeVariableAdd(
2 array(’name’ => ’variable name’, ’value’ => $value)
3);

When $value is a string, the value of the variable identified by that string is used.

Appendix B. API Reference 66

Sebastian Bergmann Design and Implementation of a Workflow Engine

ezcWorkflowNodeVariableSub

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeVariableSub class subtracts a given value, either a con-
stant or the value of another workflow variable, from a specified workflow variable.

1 $sub = new ezcWorkflowNodeVariableSub(
2 array(’name’ => ’variable name’, ’value’ => $value)
3);

When $value is a string, the value of the variable identified by that string is used.

ezcWorkflowNodeVariableMul

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeVariableMul class multiplies a specified workflow vari-
able with a given value, either a constant or the value of another workflow variable.

1 $mul = new ezcWorkflowNodeVariableMul(
2 array(’name’ => ’variable name’, ’value’ => $value)
3);

When $value is a string, the value of the variable identified by that string is used.

ezcWorkflowNodeVariableDiv

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeVariableDiv class divides a specified workflow variable
by a given value, either a constant or the value of another workflow variable.

Appendix B. API Reference 67

Sebastian Bergmann Design and Implementation of a Workflow Engine

1 $div = new ezcWorkflowNodeVariableDiv(
2 array(’name’ => ’variable name’, ’value’ => $value)
3);

When $value is a string, the value of the variable identified by that string is used.

ezcWorkflowNodeVariableIncrement

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeVariableIncrement class increments the value of a
specified workflow variable.

1 $inc = new ezcWorkflowNodeVariableIncrement(’variable name’);

ezcWorkflowNodeVariableDecrement

Incoming Nodes: 1

Outgoing Nodes: 1

An object of the ezcWorkflowNodeVariableDecrement class decrements the value of a
specified workflow variable.

1 $dec = new ezcWorkflowNodeVariableDecrement(’variable name’);

B.1.6. Workflow Patterns

ezcWorkflowNodeParallelSplit

Incoming Nodes: 1

Outgoing Nodes: 2 . . . *

The ezcWorkflowNodeParallelSplit class implements the Parallel Split workflow pat-
tern.

Appendix B. API Reference 68

Sebastian Bergmann Design and Implementation of a Workflow Engine

ezcWorkflowNodeSynchronization

Incoming Nodes: 2 . . . *

Outgoing Nodes: 1

The ezcWorkflowNodeSynchronization class implements the Synchronization workflow
pattern.

ezcWorkflowNodeExclusiveChoice

Incoming Nodes: 1

Outgoing Nodes: 2 . . . *

The ezcWorkflowNodeExclusiveChoice class implements the Exclusive Choice workflow
pattern.

ezcWorkflowNodeSimpleMerge

Incoming Nodes: 2 . . . *

Outgoing Nodes: 1

The ezcWorkflowNodeSimpleMerge class implements the Simple Merge workflow pattern.

ezcWorkflowNodeLoop

Incoming Nodes: 2

Outgoing Nodes: 2

The ezcWorkflowNodeLoop class is a specialization of the ezcWorkflowNodeExclusiveChoice
class and may be used to conveniently express loops.

Appendix B. API Reference 69

Sebastian Bergmann Design and Implementation of a Workflow Engine

1 $workflow = new ezcWorkflow(’IncrementingLoop ’);
2

3 $set = new ezcWorkflowNodeVariableSet(array(’i’ => 1));
4 $step = new ezcWorkflowNodeVariableIncrement(’i’);
5

6 $break = new ezcWorkflowConditionVariable(
7 ’i’, new ezcWorkflowConditionIsEqual(10)
8);
9

10 $continue = new ezcWorkflowConditionVariable(
11 ’i’, new ezcWorkflowConditionIsLessThan(10)
12);
13

14 $workflow ->startNode ->addOutNode($set);
15

16 $loop = new ezcWorkflowNodeLoop;
17 $loop ->addInNode($set)
18 addInNode($step)
19 addConditionalOutNode($continue , $step)
20 addConditionalOutNode($break , $workflow ->endNode);

The code above is equivalent to a for-loop that iterates the variable i from 1 to 10.

ezcWorkflowNodeMultiChoice

Incoming Nodes: 1

Outgoing Nodes: 2 . . . *

The ezcWorkflowNodeMultiChoice class implements the Multi-Choice workflow pattern.

ezcWorkflowNodeSynchronizingMerge

Incoming Nodes: 2 . . . *

Outgoing Nodes: 1

The ezcWorkflowNodeSynchronizingMerge class implements the Synchronizing Merge work-
flow pattern.

Appendix B. API Reference 70

Sebastian Bergmann Design and Implementation of a Workflow Engine

ezcWorkflowNodeDiscriminator

Incoming Nodes: 2 . . . *

Outgoing Nodes: 1

The ezcWorkflowNodeDiscriminator class implements the Discriminator workflow pat-
tern.

B.2. Condition Classes

The ezcWorkflowCondition classes can be used to express branch conditions and input val-
idation.

B.2.1. Variable Access

ezcWorkflowConditionVariable

An object of the ezcWorkflowConditionVariable class decorates another
ezcWorkflowCondition object and applies it condition to a workflow variable.

1 $condition = new ezcWorkflowConditionVariable(
2 ’foo’, new ezcWorkflowConditionIsTrue
3);

ezcWorkflowConditionVariables

An object of the ezcWorkflowConditionVariables class decorates an
ezcWorkflowConditionComparison object and applies it to two workflow variables.

1 $condition = new ezcWorkflowConditionVariables(
2 ’foo’, ’bar’, new ezcWorkflowConditionIsEqual
3);

Appendix B. API Reference 71

Sebastian Bergmann Design and Implementation of a Workflow Engine

B.2.2. Boolean Expressions

ezcWorkflowConditionNot

An object of the ezcWorkflowConditionNot class decorates an ezcWorkflowCondition

object and negates its expression.

1 $notNondition = new ezcWorkflowConditionNot($condition);

ezcWorkflowConditionAnd

An object of the ezcWorkflowConditionAnd class represents a boolean AND expression. It
can hold an arbitrary number of ezcWorkflowCondition objects.

1 $and = new ezcWorkflowConditionAnd(array($condition , ...));

ezcWorkflowConditionOr

An object of the ezcWorkflowConditionOr class represents a boolean OR expression. It can
hold an arbitrary number of ezcWorkflowCondition objects.

1 $or = new ezcWorkflowConditionOr(array($condition , ...));

ezcWorkflowConditionXor

An object of the ezcWorkflowConditionXor class represents a boolean XOR expression. It
can hold an arbitrary number of ezcWorkflowCondition objects.

1 $xor = new ezcWorkflowConditionXor(array($condition , ...));

B.2.3. Comparisons

ezcWorkflowConditionIsTrue

The condition represented by an ezcWorkflowConditionIsTrue object evaluates to true

when the associated workflow variable has the value true.

Appendix B. API Reference 72

Sebastian Bergmann Design and Implementation of a Workflow Engine

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsTrue
4);

ezcWorkflowConditionIsFalse

The condition represented by an ezcWorkflowConditionIsFalse object evaluates to true

when the associated workflow variable has the value false.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsFalse
4);

ezcWorkflowConditionIsEqual

The condition represented by an ezcWorkflowConditionIsEqual object evaluates to true

when the associated workflow variable is equal to the comparison value.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsEqual($comparisonValue)
4);

ezcWorkflowConditionIsNotEqual

The condition represented by an ezcWorkflowConditionIsNotEqual object evaluates to
true when the associated workflow variable is not equal to the comparison value.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsNotEqual($comparisonValue)
4);

Appendix B. API Reference 73

Sebastian Bergmann Design and Implementation of a Workflow Engine

ezcWorkflowConditionIsGreaterThan

The condition represented by an ezcWorkflowConditionIsGreaterThan object evaluates
to true when the associated workflow variable is greater than the comparison value.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsGreaterThan($comparisonValue)
4);

ezcWorkflowConditionIsEqualOrGreaterThan

The condition represented by an ezcWorkflowConditionIsEqualOrGreaterThan object
evaluates to true when the associated workflow variable is equal or greater than the com-
parison value.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsEqualOrGreaterThan($comparisonValue)
4);

ezcWorkflowConditionIsLessThan

The condition represented by an ezcWorkflowConditionIsLessThan object evaluates to
true when the associated workflow variable is less than the comparison value.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsLessThan($comparisonValue)
4);

ezcWorkflowConditionIsEqualOrLessThan

The condition represented by an ezcWorkflowConditionIsEqualOrLessThan object eval-
uates to true when the associated workflow variable is equal or less than the comparison
value.

Appendix B. API Reference 74

Sebastian Bergmann Design and Implementation of a Workflow Engine

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsEqualOrLessThan($comparisonValue)
4);

B.2.4. Types

ezcWorkflowConditionIsAnything

The condition represented by an ezcWorkflowConditionIsAnything object always evalu-
ates to true.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsAnything
4);

ezcWorkflowConditionIsArray

The condition represented by an ezcWorkflowConditionIsArray object evaluates to true

when the associated workflow variable is an array.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsArray
4);

ezcWorkflowConditionIsBool

The condition represented by an ezcWorkflowConditionIsBool object evaluates to true

when the associated workflow variable is a boolean.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsBool
4);

Appendix B. API Reference 75

Sebastian Bergmann Design and Implementation of a Workflow Engine

ezcWorkflowConditionIsFloat

The condition represented by an ezcWorkflowConditionIsFloat object evaluates to true

when the associated workflow variable is a float.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsFloat
4);

ezcWorkflowConditionIsInteger

The condition represented by an ezcWorkflowConditionIsInteger object evaluates to true
when the associated workflow variable is an integer.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsInteger
4);

ezcWorkflowConditionIsObject

The condition represented by an ezcWorkflowConditionIsObject object evaluates to true

when the associated workflow variable is an object.

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsObject
4);

ezcWorkflowConditionIsString

The condition represented by an ezcWorkflowConditionIsString object evaluates to true

when the associated workflow variable is a string

1 $condition = new ezcWorkflowConditionVariable(
2 ’variable name’,
3 new ezcWorkflowConditionIsString
4);

Appendix B. API Reference 76

Sebastian Bergmann Design and Implementation of a Workflow Engine

ezcWorkflowNodeBranch

$m inOutNodes
$m axOutNodes

act ivateOutgoingNodes()

ezcWorkflowNodeCondit ionalBranch

$m inCondit ionalOutNodes
$m inAct ivatedCondit ionalOutNodes
$m axAct ivatedCondit ionalOutNodes
$configurat ion

+ addCondit ionalOutNode()
+ getCondit ion()
+ execute()
+ verify()

ezcWorkflowNodeParallelSplit

+ execute()

ezcWorkflowNode

+ WAITING_FOR_ACTIVATION
+ WAITING_FOR_EXECUTION
$id
$inNodes
$outNodes
$m inInNodes
$m axInNodes
$m inOutNodes
$m axOutNodes
$num InNodes
$num OutNodes
$configurat ion
$act ivat ionState
$act ivatedFrom
$state
$threadId
$internalCall

+ __construct()
+ addInNode()
+ rem oveInNode()
+ addOutNode()
+ rem oveOutNode()
+ get Id()
+ set Id()
+ setAct ivat ionState()
+ get InNodes()
+ getOutNodes()
+ getConfigurat ion()
+ getState()
+ setState()
+ getAct ivatedFrom ()
+ setAct ivatedFrom ()
+ getThreadId()
+ setThreadId()
+ verify()
+ accept()
+ act ivate()
+ isExecutable()
+ execute()
+ __toString()
act ivateNode()
initState()

Figure B.3.: The ezcWorkflowNodeBranch class and its subclasses

Appendix B. API Reference 77

Sebastian Bergmann Design and Implementation of a Workflow Engine

ezcWorkflowNodeMerge

$m inInNodes
$m axInNodes
$state

prepareAct ivate()
doMerge()
initState()

ezcWorkflowNodeDiscrim inator

+ act ivate()
+ execute()

ezcWorkflowNodeSim pleMerge

+ act ivate()
+ execute()

ezcWorkflowNodeSynchronizat ion

+ act ivate()
+ execute()

ezcWorkflowNode

+ WAITING_FOR_ACTIVATION
+ WAITING_FOR_EXECUTION
$id
$inNodes
$outNodes
$m inInNodes
$m axInNodes
$m inOutNodes
$m axOutNodes
$num InNodes
$num OutNodes
$configurat ion
$act ivat ionState
$act ivatedFrom
$state
$threadId
$internalCall

+ __construct()
+ addInNode()
+ rem oveInNode()
+ addOutNode()
+ rem oveOutNode()
+ get Id()
+ set Id()
+ setAct ivat ionState()
+ get InNodes()
+ getOutNodes()
+ getConfigurat ion()
+ getState()
+ setState()
+ getAct ivatedFrom ()
+ setAct ivatedFrom ()
+ getThreadId()
+ setThreadId()
+ verify()
+ accept()
+ act ivate()
+ isExecutable()
+ execute()
+ __toString()
act ivateNode()
initState()

Figure B.4.: The ezcWorkflowNodeMerge class and its subclasses

Appendix B. API Reference 78

Sebastian Bergmann Design and Implementation of a Workflow Engine

ezcWorkflowNodeSynchronizat ion

+ act ivate()
+ execute()

ezcWorkflowNodeSynchronizingMerge

ezcWorkflowNodeMerge

$m inInNodes
$m axInNodes
$state

prepareAct ivate()
doMerge()
initState()

Figure B.5.: The ezcWorkflowNodeSynchronization class and its subclasses

ezcWorkflowNodeCondit ionalBranch

$m inCondit ionalOutNodes
$m inAct ivatedCondit ionalOutNodes
$m axAct ivatedCondit ionalOutNodes
$configurat ion

+ addCondit ionalOutNode()
+ getCondit ion()
+ execute()
+ verify()

ezcWorkflowNodeExclusiveChoice

$m inCondit ionalOutNodes
$m inAct ivatedCondit ionalOutNodes
$m axAct ivatedCondit ionalOutNodes

ezcWorkflowNodeLoop

$m inInNodes
$m axInNodes
$m inOutNodes
$m axOutNodes

ezcWorkflowNodeMult iChoice

ezcWorkflowNodeBranch

$m inOutNodes
$m axOutNodes

act ivateOutgoingNodes()

Figure B.6.: The ezcWorkflowNodeConditionalBranch class and its subclasses

Appendix B. API Reference 79

Appendix C.

Bibliography

[AIIM] Association for Information and Image Management (AIIM). What is ECM?

http://www.aiim.org/about-ecm.asp

[ARK03] Atul Ravi Khemuka. Workflow Modeling Using Finite Automata. PhD Thesis, De-
partment of Industrial and Management Engineering, College of Engineering, Uni-
versity of South Florida, USA, 2003.

[BK03] Bartosz Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow

Modelling in Workflows. PhD Thesis, Faculty of Information Technology, Queens-
land University of Technology, Australia, 2003.

[DAM01] Dragos-Anton Manolescu. Micro-Workflow: A Workflow Architecture Supporting

Compositional Object-Oriented Software Development. PhD Thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, USA, 2001.

[DG95] Dimitrios Georgakopoulos and Mark F. Hornick and Amit P. Sheth. An Overview of

Workflow Management: From Process Modeling to Workflow Automation Infrastruc-

ture. In: Distributed and Parallel Databases, Volume 3, Number 2, Pages 119–153,
1995.

[DQZ01] Da-Qian Zhang and Kang Zhang and Jiannong Cao. A Context-Sensitive Graph

Grammar Formalism for the Specification of Visual Languages. In: The Computer
Journal, Volume 33, Number 3, Pages 186–200, 2001.

[DS06] Douglas C. Schmidt. Model-Driven Engineering. In: IEEE Computer, Volume 39,
Number 2, Pages 25–31, 2006.

80

http://www.aiim.org/about-ecm.asp

Sebastian Bergmann Design and Implementation of a Workflow Engine

[FB96] Frank Buschmann and Regine Meunier and Hans Rohnert and Peter Sommerlad and
Michael Stahl. Pattern-Oriented Software Architecture – A System of Patterns. John
Wiley & Sons, 1996.

[FG02] Florent Guillaume. Trying to unify Entity-based and Activity-based workflows.
http://wiki.zope.org/zope3/TryingToUnifiyWorkflowConcepts

[GF03] Garland Foster and Richard Moore and Eduardo Polidor. Galaxia: An Open Source

Workflow Engine for Tiki

http://workflow.tikiwiki.org/tiki-index.php?page=GalaxiaConcepts

[GoF94] Erich Gamma and Richard Helm and Ralph Johnson and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[JBOSS] The JBoss Project. JBoss jBPM: Workflow and BPM Made Practical.
http://docs.jboss.com/jbpm/v3/userguide/graphorientedprogramming.

html

[JD01] Jörg Desel and Gabriel Juhás. What Is a Petri Net?. In: Unifying Petri Nets:
Advances in Petri Nets, Lecture Notes in Computer Science, Volume 2128/2001,
Springer, 2001.

[JM01] Jishnu Mukerji and Joaquin Miller. MDA Guide.
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf

[KL97] Karl J. Lieberherr. Connections between Demeter/Adaptive Programming and

Aspect-Oriented Programming (AOP). College of Computer Science, Northeastern
University, Boston, MA, USA, 1997.
http://www.ccs.neu.edu/home/lieber/connection-to-aop.html

[MF05] Martin Fowler. Language Workbenches: The Killer-App for Domain Specific Lan-

guages? June, 2005.
http://martinfowler.com/articles/languageWorkbench.html

[ML05] Markus Löschnigg. XML in Workflow Management Systems. Master’s Thesis, Graz
University of Technology, Austria, 2005.

[OPENFLOW] The OpenFlow Project. OpenFlow: An Introduction.
http://www.openflow.it/wwwopenflow/Documentation/documentation/

OpenFlowIntroduction/

Appendix C. Bibliography 81

http://wiki.zope.org/zope3/TryingToUnifiyWorkflowConcepts
http://workflow.tikiwiki.org/tiki-index.php?page=GalaxiaConcepts
http://docs.jboss.com/jbpm/v3/userguide/graphorientedprogramming.html
http://docs.jboss.com/jbpm/v3/userguide/graphorientedprogramming.html
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf
http://www.ccs.neu.edu/home/lieber/connection-to-aop.html
http://martinfowler.com/articles/languageWorkbench.html
http://www.openflow.it/wwwopenflow/Documentation/documentation/OpenFlowIntroduction/
http://www.openflow.it/wwwopenflow/Documentation/documentation/OpenFlowIntroduction/

Sebastian Bergmann Design and Implementation of a Workflow Engine

[PM99] Peter Muth and Jeanine Weisenfels and Michael Gillmann and Gerhard Weikum.
Integrating Light-Weight Workflow Management Systems within Existing Business

Environments. In: Proceedings of the 15th International Conference on Data Engi-
neering, March 1999, Sydney, Australia.

[RA01] Rob Allen. Workflow: An Introduction. In: Workflow Handbook, Workflow Manage-
ment Coalition, 2001.

[RF00] Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is Quantifi-

cation and Obliviousness. In: Proceedings of the Workshop on Advanced Separation
of Concerns, OOPSLA 2000, October 2000, Minneapolis, USA.

[SB05] Sebastian Bergmann. Professionelle Softwareentwicklung mit PHP 5. dpunkt.verlag,
2005.

[SB06] Sebastian Bergmann and Günter Kniesel. GAP: Generic Aspects for PHP. Third Eu-
ropean Workshop on Aspects in Software, August 2006, University of Twente, En-
schede, The Netherlands.

[SF04] Sérgio Fernandes and João Cachopo and António Rito-Silva. Supporting Evolution

in Workflow Definition Languages. In: Proceedings of the 20th Conference on Cur-
rent Trends in Theory and Practice of Computer Science (SOFSEM 2004), Springer-
Verlag, 2004.

[SH05] Saphira Heijens. Support for Workflow Administration and Monitoring in the YAWL

Environment. Master Thesis, Vrije Universiteit, Amsterdam, The Netherlands, 2005.

[TM04] Tony Marston. An Activity-Based Workflow Engine for PHP. September 2004.
http://www.tonymarston.net/php-mysql/workflow.html

[TS04] Thomas Schmidt. Erweiterung und Integration des Open Source Workflow-Systems

SWAMP am Beispiel eines Software-Wartungs-Prozesses. Diploma Thesis, Georg-
Simon-Ohm-Fachhochschule, Nürnberg, Germany, 2004.

[W3C07] World Wide Web Consortium. XSL Transformations (XSLT) Version 2.0. W3C Rec-
ommendation, January 2007.
http://www.w3.org/TR/2007/REC-xslt20-20070123/

[WA96] W. M. P. van der Aalst. Petri-net-based Workflow Management Software. In: Pro-
ceedings of the NFS Workshop on Workflow and Process Automation in Information
Systems, May 1996, Athens, Georgia, USA.

Appendix C. Bibliography 82

http://www.tonymarston.net/php-mysql/workflow.html
http://www.w3.org/TR/2007/REC-xslt20-20070123/

Sebastian Bergmann Design and Implementation of a Workflow Engine

[WA04] W. M. P. van der Aalst and L. Aldred and M. Dumas and A. H. M. ter Hofstede.
Design and Implementation of the YAWL System. In: Proceedings of the 16th Inter-
national Conference on Advanced Information Systems Engineering (CAiSE 2004),
June 2004, Riga, Latvia.

[WfMC95] Workflow Management Coalition. The Workflow Reference Model. Document
Number WFMC-TC-1003, 1995.

[WfMC99] Workflow Management Coalition. Terminology and Glossary. Document Number
WFMC-TC-1011, 1999.

[WfMC05] Workflow Management Coalition. Workflow Process Definition Interface – XML

Process Definition Language (XPDL). Document Number WFMC-TC-1025, 2005.

Appendix C. Bibliography 83

	Manifesto
	License
	Abstract
	List of Figures
	Introduction
	Problem Domain
	Enterprise Content Management
	Workflow Management
	Summary

	Workflow Semantics
	Petri Nets
	Workflow Patterns
	Basic Control Flow Patterns
	Advanced Branching and Synchronization
	Structural Patterns
	Cancellation Patterns

	Summary

	Technology
	PHP
	eZ Publish
	eZ Components

	Requirements
	eZ Publish 3
	eZ Publish Telemark
	Use Cases

	Summary

	Workflow Model
	Semantics
	Activities and Transitions
	State and Workflow Variables
	Control Flow
	Action Nodes and Service Objects
	Sub-Workflows

	Syntax
	Graph Structure
	Conditions

	Summary

	Design and Implementation
	Architecture
	Workflow Virtual Machine
	Graph-Oriented Programming
	Implementation Details
	Example
	Summary

	Evaluation and Related Work
	Evaluation
	Workflow Model
	Implementation

	Related Work
	Research
	Workflow Systems for PHP

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Analysis and Verification of Workflows
	Workflow Model
	Aspect-Oriented Programming
	Compilation of Workflows

	Tutorial
	Workflow Definition API
	Defining a New Workflow
	Loading an Existing Workflow

	Workflow Execution API
	Workflow with Wait States
	Workflow without Wait States
	Simulating Workflow Execution

	API Reference
	Graph Node Classes
	ezcWorkflowNode
	Start and End Nodes
	ezcWorkflowNodeAction
	ezcWorkflowNodeSubWorkflow
	Workflow Variables
	Workflow Patterns

	Condition Classes
	Variable Access
	Boolean Expressions
	Comparisons
	Types

	Bibliography

